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to the northwest of the miogeoclinal gap. This allochthonous continental
crustal fragment, bounded by strike-slip faults, represents a structural repe-
tition of Neoproterozoic to early Paleozoic rift and passive-margin sedi-
mentary rocks in this area (Tempelman-Kluit, 1979). Estimates of the dis-
placement of this platform along the Tintina—Northern Rocky Mountain
trench fault system and other poorly defined dextral strike-slip faults range
from 450 km (Tempelman-Kluit, 1979) to greater than 1000 km (Gabrielse,
1985, 1991). The Cassiar platform was tectonically stretched during part of
its northward translation and had an original length comparable to the mio-
geoclinal gap. We suggest that the Cassiar platform may have been derived
from the miogeoclinal gap, severed during late Paleozoic-Mesozoic oroge-
nesis of the Cordillera, and transported northward to its present location.

CASSIAR PLATFORM STRATIGRAPHY AND
PALEOMAGNETIC CONSTRAINTS

The Cassiar platform in the McDame map area (Cassiar Mountains)
contains Neoproterozoic Windermere Supergroup equivalents (Ingenika
Group) unconformably overlain by Neoproterozoic-Lower Cambrian
quartzarenites and archeocyathan-bearing limestones (Mansy and Gabri-
else, 1978; Fritz, 1978). This succession records a geologic history similar
to that of southern British Columbia and southern Idaho, including evidence
of middle Paleozoic “Antler-style” deformation (Gordey et al., 1987;
Fig. 1B). The Sylvester allochthon, a complex assemblage of Upper Devo-
nian—-Triassic oceanic rocks, was likely accreted to the Cassiar platform by
the Middle Jurassic (Gabrielse, 1991).

The Lower Cambrian Atan Group in the Cassiar platform is composed
of the Boya and Rosella formations (Fritz, 1980). The Boya Formation is a
coarse-grained sandstone and quartzite unit that grades upward into siltstone
(Gabrielse, 1963; Fritz, 1978) and probably represents fluvial to shallow-
marine sedimentation, similar to other Neoproterozoic—Lower Cambrian
quartzites in the Cordillera (cf. Fedo and Cooper, 1990; Devlin and Bond,
1988). The overlying Rosella Formation is a richly fossiliferous succession
that includes two siltstone to carbonate cycles containing trilobites from the
Nevadella and Bonnia-Olenellus zones (Fritz, 1978, 1980) and archeocy-
athans of the upper Atdabanian—lower Botomian stages (Rowland and Gan-
gloff, 1988).

The Rosella Formation was deposited in shallow subtidal to peritidal
environments (Pope, 1989). The lower siltstone member (28—40 m thick) in-
cludes a thin, basal sandstone overlain by interbedded siltstone, shale, and
thin limestone containing rare archeocyathan bioherms. The lower carbon-
ate member (50—150 m thick) is a shallowirig-upward succession of
medium- to thick-bedded, locally cross-bedded, oolitic and intraclastic
grainstone and packstone indicative of high-energy subtidal deposition. A
westward increase of oolitic grainstone in this member suggests that oolitic
shoals developed toward the shelf margin (Fig. 2). The upper siltstone mem-
ber (25-60 m thick) is composed of siltstone, shale, and quartzite with car-
bonate interbeds, and records progradation of lagoonal facies over ooid
shoals, probably during a sea-level fall. Upper carbonate rocks (87-250 m
thick) include thick-bedded intraclastic and ooid grainstone with some pel-
let wackestone, indicating renewed transgression and deposition in a subti-
dal environment. The upper contact is not exposed because of subsequent
thrusting.

Paleomagnetic data from the overlying Sylvester allochthon in the
Cassiar area (Butler et al., 1988) indicates it has undergone 600 km of north-
ward translation since 105 Ma. Furthermore, Richards et al. (1993) sug-
gested that at least part of the Sylvester allochthon in this area has undergone
20002500 km (up to 20°) of northward translation, most of it during Perm-
ian and Triassic time. :

REGIONAL CORRELATIONS

Lower Cambrian archeocyathan-bearing formations of late Atdaban-
jan to early Botomian age extend discontinuously from Mexico to northern
Nevada and from northeastern Washington to Alaska (Fig. 1A) and are
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Figure 2. Schematic cross section of Lower Cambrian archeocyathan-
bearing limestones and interbedded clastic rocks (adapted from Fritz,
1975). A and B correspond to grand cycles based on regional correla-
tions. Inverted triangles above cross section approximate location of
measured sections in this study. Rosella Formation of Cassiar platform
is interpreted to correspond with carbonate-rich outboard portion of
cross section, whereas silicictastic-rich inner portion was stranded in
Idaho (Oriel and Armstrong, 1971; McCandless, 1983). Basinal facies
are not exposed.

grouped into three lithostratigraphic belts (inner detrital, middle carbonate,
and outer detrital) that roughly paralleled the Cambrian shoreline (Robison,
1960). The inner detrital belt represents deposition in low- to moderate-en-
ergy sand- and mud-dominated environments landward of a carbonate bank,
and the outer detrital belt represents deposition of black shale and siltstone
seaward of the carbonate bank. Lower Cambrian archeocyathan-bearing
formations in the Cordillera can generally be subdivided into three “grand
cycles” (Fritz, 1975), each characterized by a shaly base and a carbonate cap
(Fig. 2). The basal cycle (A) is composed of fine-grained siliciclastic rocks
and thin carbonate interbeds that grade upward into an overlying carbonate
member in the Nevadella zone. Archeocyathan bioherms are locally com-
mon in the carbonate interbeds in the siliciclastic intervals. The carbonate
member contains abundant oolites, intraclasts, and archeocyathan bioherms.
The lower siltstone and lower carbonate members of the Rosella Formation
correspond to this basal cycle (Fig. 2).

The middle cycle (B) consists of a thin siliciclastic interval, the base of
which is at, or near, the Nevadella and Bonnia-Olenellus zone boundary,
and a conformably overlying thick carbonate member (Fritz, 1975; Fig. 2).
The carbonate member is primarily a pisolitic and oncolitic grainstone with
subordinate oolitic and intraclastic grainstone. The middle cycle (B) is rep-
resented in the Cassiars by the upper siltstone and limestone members of the
Rosella Formation. The upper cycle (C) is not exposed in the study area, but
is present in the southern Cassiars (Fritz, 1978).

The paleogeography of the basal unit (grand cycle A) in the Rosella
Formation—an oolitic shoal complex to the west that passes eastward into
a silty, quiet-water peritidal setting—is very similar to the paleogeography
inferred for the basal carbonate member of Lower Cambrian limestones
elsewhere in the Cordillera (cf. Moore, 1976; Rowland, 1981). The strong
similarities of lithofacies between the Lower Cambrian limestones in the
Cassiar platform and other localities in the Cordillera and the common ap-
pearance of oolitic limestone from California to Alaska suggest that oolitic
shoals commonly developed toward the seaward edge of the carbonate shelf
during the Nevadella zone (Fig. 3).

Geochronologic studies that propose shortening the Cambrian System
by ~30 m.y. (e.g., Bowring et al., 1993) and the suggestion by Landing
(1994) that the majority of Early Cambrian time may be pretrilobitic sug-
gest that archeocyathan stages are on the order of 1-5 m.y. duration. Thus,
these archeocyathan limestones constitute a well-defined stratigraphic
marker unit that may be useful for regional tectonostratigraphic correlation.
Each siliciclastic-carbonate couplet (grand cycles A, B, and C) is probably
a third-order (1-3 m.y. duration) depositional sequence, the siliciclastic
strata representing lowstand deposits and the carbonate strata representing
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Figure 3. Correlation chart of Archeocyathan-bearing limestones in North American Cordillera. Note near time equivalence of each Lower Cam-
brian limestone unit. Datum is Nevadella-Bonnia-Olenellus zone boundary.

transgressive and highstand deposits. The bands of Nevadella archeocy-
athan bioherms are thus narrow paleogeographic markers of extremely short
duration, representing time lines and map lines, duplicated in northern
British Columbia, and missing in western Idaho.

DISCUSSION

The allochthonous Cassiar platform contains a section of Lower Cam-
brian peritidal and shallow-shelf limestones and siliciclastic rocks that is
tectonically stranded along the Tintina~Northern Rocky Mountain trench
fault against Lower Cambrian basinal shales of the Mackenzie Mountains
(Fig. 1A). Restoring the Cassiar platform 600 km southward (Fig. 4) in ac-
cordance with paleomagnetic data of Butler et al. (1988) juxtaposes two
westward-facing packages of Lower Cambrian passive-margin sedimentary
rocks. We propose that the platform restores to the severed Idaho to south-
eastern Washington segment of the passive margin (Fig. 4), in accord with
paleomagnetic constraints from Richards et al. (1993).

The proposed reconstruction would (1) result in a passive margin with
a nearly continuous coid-archeocyathan shoal from Alaska to Mexico dur-
ing the brief Nevadella zone; (2) restore the archeocyathan migration path-
way proposed for western North America (Rowland and Gangloff, 1988);
(3) place Permian fusulinid-bearing limestones of the Sylvester allochthon
(used in paleomagnetic studies by Butler et al., 1988) nearer to the other two
locations of these fossils, in allochthonous blocks of northeastern Washing-
ton and northern California, possibly indicating that all three localities are
part of the same tectonic domain; and (4) restore the initial 3St/8Sr 0.706
isopleth to a single smooth trace in this area, more representative of a pas-
sive margin.

CONCLUSIONS

On the basis of stratigraphic information presented here and previous
paleomagnetic data, the Cassiar platform in north-central British Columbia
is interpreted to represent an allochthonous passive-margin section that was
originally deposited near Idaho. This fragment was severed from North
America and translated northward along the Tintina—Northern Rocky
Mountain trench fault and other poorly defined dextral strike-slip faults that
roughly parallel the initial 87Sr/%Sr 0.706 isopleth to its present location.
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Figure 4. Map of U.S. Cordillera with
Cassiar platform translated 600 km
south (A) in accordance with paleo-
magnetic data from Butler et al. (1988)
and to its proposed site of deposition
(B) in accord with subsequent
>2000 km northward translation (Rich-
ards et al., 1993). Cassiar platform is
smaller (~400 km) than in Figure 1A be-
cause subsequent strike-slip lengthen-
ing was restored. Symbols are the
same as in Figure 1A.
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