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ABSTRACT

Central to debate about the age, origin, and evolution of Grand Canyon (southwestern
United States) is the history of the Colorado River and its precursors. Reversal of dextral
slip along the San Andreas fault system since the early Pliocene restores southern California
to the downstream end of the Colorado River. If the Colorado River flowed to the Pacific
Ocean prior to 6 Ma, then its sand would have the distinctive detrital-zircon age distributions
of upper Paleozoic and Mesozoic strata of the Colorado Plateau, which contain 30%-46%
300-1100 Ma zircon originally transported from orogenic belts of southeastern Laurentia. In
contrast, age distributions of 6662 detrital zircons from 167 Upper Cretaceous-Pliocene sand-
stone samples from southern California average 44 %-88 % Cretaceous, with only 0.4%-1.3%
300-1100 Ma grains, most of which can be attributed to local recycling from older deposits.
No individual Upper Cretaceous to Pliocene sandstone sample from southern California con-
tains >3% 300-1100 Ma zircon. Although Paleogene headwaters of southern California riv-
ers extended into the eastern Mojave Desert, Sonoran Desert, and Mogollon Highlands, our
results indicate that these headwaters did not extend as far as the Coloradoe Plateau. This con-
clusion conflicts with the hypothesis of a Paleogene southwest-flowing Arizona River, but sup-
ports late Miocene—Pliocene drainage reorganization and integration of the Colorado River

coincident with development of the Salton Trough and Gulf of California.

INTRODUCTION

Central to debate about the age, origin, and
evolution of Grand Canyon (southwestern
United States) is the timing of river integration
and canyon cutting by the Colorado River and
its precursors (e.g., Longwell, 1946; Lucchitta,
1972, 2003; Spencer and Pearthree. 2001: Young
and Spamer, 2001; Powell. 2005; Flowers et al.,
2008; Karlstrom et al., 2008; Pederson, 2008,
and references therein). Recent studies sup-
port models that the lower Colorado River and
Grand Canyon have been incised since 6 Ma
due to drainage integration over Grand Wash
Cliffs (e.g.. Pederson et al., 2002; Karlstrom et
al., 2007, 2008; Dorsey, 2010; Kimbrough et al.,
2010; Dorsey et al., 2011). Other studies have
proposed precursor rivers, flowing from the
craton into southern California, that may have
headed in a proto~Grand Canyon (e.g., How-
ard, 2000; Wernicke, 2011). Wernicke (2011)
proposed a three-stage cutting of the canyon by
a Late Cretaceous northeast-flowing California
River, a Paleogene southwest-flowing Arizona
River, and the Neogene-Holocene southwest-
flowing Colorado River. This model predicts
that detritus carried by the precursor river
should be found in Paleogene fluvial, deltaic,
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Figure 1. Simplified pre—
15 Ma palinspastic resto-
ration of southern Cali-
fornia (after Jacobson et
al.,, 2011) showing sam-
ple locations. Restored
fault offsets include San
Andreas fault (SAF) and
San Gabriel fault (SGF),
and San Gregorio—Hos-
gri and Rinconada faults
(not shown). Garlock
fault (GF) and Nacimiento
fault (NF) have not been
restored. Also shown are
hypothetical Paleogene
Arizona River (Wernicke,
2011), Eocene shoreline
and river systems (bold
yellow lines) (Abbott
and Smith, 1989; How-
ell et al,, 1974; Lechler
and Niemi, 2011), and
Oligocene Sespe depo-
systems (Howard, 2000).
K—Cretaceous; U.—Up-
per; L.—Lower; M.—
Middle; LP—La Panza
Range; LV—Lockwood
Valley; MO—Monterey;

and marine strata of coastal southern Califor-

nia (Fig. 1). Wernicke's (2011) Arizona River is
similar to Howard’s (2000) model of a “Sespe-
Colorado paleoriver,” which also would have
provided detritus to southern California; how-
ever, Howard’s model did not include cutting of
Grand Canyon.

Upper Paleozoic and Mesozoic strata of the
Colorado Plateau have unique detrital-zircon
age distributions ultimately derived from the
ancestral central and southern Appalachian
and Ouachita regions (southern United States),
including accreted peri-Gondwanan terranes
(e.g.. Dickinson and Gehrels, 2003, 2009, 2010;
Gehrels et al., 2011). This distinctive signature
is clearly expressed in Pliocene to Holocene
terrace and lacustrine deposits adjacent to the
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modem course of the Colorado River southwest
of the Colorado Plateau and in sedimentary
rocks as old as 5.3 Ma in the western Salton
Trough (Dorsey, 2010; Kimbrough et al., 2010;
Dorsey et al.,, 2011). Critical to questions of
ancient drainage systems, however, is determi-
nation of the oldest Colorado Plateau—derived
detritus in southern California. Reconstructions
place the Los Angeles region adjacent to the
modern course of the Colorado River prior to
movement along the San Andreas fault system
(ca. 5 Ma) (Fig. 1), a result consistent with mito-
chondrial DNA studies of fish (c.g., Spencer et
al., 2008). If the hypothetical Arizona River had
croded Colorado Platcau strata, then their dis-
tinctive detrital-zircon age signature should be
found in Palcogene strata of the Los Angeles
region. Our purpose is to test this hypothesis.

METHODS AND RESULTS

Detrital-zircon U-Pb age distributions were
generated primarily using laser-ablation—mul-
ticollector inductively coupled plasma—mass
spectrometry (LA-ICPMS) at the University of
Arizona LaserChron Center; methods of data
acquisition were summarized in Grove et al.
(2003), Gehrels et al. (2008), and Jacobson et
al. (2011).

All available samples from southern Califor-
nia (both published and new) were grouped by
age (Triassic to Pliocene) for comparison with
distribution plots of lower Palcozoic, upper
Paleozoic, Triassic, Jurassic, and Cretaceous
strata of the Colorado Platcau, and Holocene
sand of the Colorado River (Fig. 2; Table 1).
The distinctive Colorado Plateau signal consists
of age ranges of 300-750 Ma (middle Paleozoic
through late Neoproterozoic) and 900-1150 Ma
(Grenville age) (Figs. 2H-2K). Because 1100~
1300 Ma Grenville rocks are minor components
of southern California basement (e.g., Barth et
al., 1997), we focus our attention on extrare-
gional 300-1100 Ma detritus. Zircon in this age
range is abundant in upper Paleozoic through
Jurassic (and some Cretaceous) strata of the
Colorado Plateau, Triassic through lowest Cre-
taceous metasedimentary wall rocks of southern
California, and Holocene Colorado River sedi-
ments (Table 1). In contrast, mid-Cretaceous
through Pliocene strata of southern California
cssentially lack 300-1100 Ma zircon and con-
tain only small amounts of Grenville (domi-
nantly 1200 Ma) zircon.

SOURCES OF SOUTHERN CALIFORNIA
DETRITUS

The age distributions of Figure 2 and Table 1
place important constraints on Mesozoic through
Cenozoic drainage evolution. The strong Colo-
rado Plateau signature (i.c., 3001100 Ma zircon)
in Triassic through lowest Cretaceous sandstone
from the southern California margin is particu-
larly significant (Fig. 2G). This pattern implies
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Figure 2. Detrital-zircon U-Pb age distribu-
tions. A: Holocene Colorado River. B-G:
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that the Triassic to Jurassic magmatic arc (e.g.,
Schweickent, 1976; Barth ¢t al., 1997) of the
southwestern United States was a low-standing
feature (Bushy-Spera, 1988) that allowed eolian
and fluvial transport from the northeast through
the arc to the coast. In contrast, the middle to
Late Cretaceous arc was a positive physio-
graphic feature, mostly outboard of the older
arc, that blocked transport from the interior to
the coast. The drainage divide moved slowly
to the east along with the magmatic arc dur-
ing most of the Cretaceous; rapid eastward

migration of the divide occurred during lat-
est  Cretaccous—Palcogene  flattening of the
subducting slab during the Laramide orogeny
(e.g., Dickinson and Snyder, 1978; Livaccari et
al., 1981; Bird, 1988; Saleeby, 2003; Jacobson
et al., 2011). The Mogollon Highlands, which
may have also undergone uplift during the
Jurassic (Dickinson and Gehrels, 2008b), were
elevated during the Laramide orogeny, resulting
in erosion of ~1-2 km of strata (Flowers et al.,
2008). Eocene rivers flowing toward the coast
increased in length and magnitude to tap the
eastern Mojave region (Jacobson et al,, 2011).
This process culminated with the Sespe River
during late Eocene and Oligocene time, with
headwaters as far northeast as the Mogollon
Highlands (Howard, 2000, 2006); new detrital-
zircon data (Fig. 2; Table 1) demonstrate that
the Scspe River did not include detritus derived
from Colorado Plateau strata (Spafford et al,,
2009; Spafford, 2010). Starting in the Oligo-
cene, slab rollback following the Laramide
orogeny (Dickinson and Snyder, 1978) caused
the drainage divide to migrate southwest. This
process culminated in development of the
southern Basin and Range Province during the
middle Miocene (Dickinson, 2002). From the
Oligocene through the Pliocene, local sources
for sand in southern California dominated. The
only direct provenance link with the Colorado
Plateau is provided by uppermost Miocene to
Holocene deposits of the Colorado River in the
Salton Trough area (Dorsey, 2010; Kimbrough
et al,, 2010; Dorsey et al., 2011).

EVALUATION OF THE ARIZONA RIVER
CONCEPT

Wernicke (2011) argued that the Palcogenc
Arizona River flowed largely along the modem
coursc of the Colorado River, and transported
detritus from the southwestern margin of the
Colorado Plateau region into southemn Califor-
nia (Fig. 1). Howard (2000, 2006) documented
extraregional rivers flowing into southem Cali-
fornia from the northeast, without suggesting
that they helped cut Grand Canyon. The dis-
tinctive Colorado Plateau signal can be used to
test whether these extraregional rivers extended
beyond the Mogollon Highlands because lower
Paleozoic, upper Paleozoic, Triassic, Lower to
Middle Jurassic, and Upper Jurassic to Creta-
ceous sandstone of the Colorado Plateau contain
average concentrations ol 300-1100 Ma zircon
of 4%, 32%, 46%, 44%, and 30%, respectively,
and modern Colorado River scdiment averages
29% 300-1100 Ma zircon (Table 1).

During the Paleogenc, ~1.5 km of Cretaccous
strata and some older Mesozoic and Paleozoic
strata along the southwestern margin of the Col-
orado Plateau region were eroded (Flowers et
al., 2008). Much of this detritus was transported
northeastward to Utah and New Mexico (e.g.,
Dickinson et al., 1988). Some northeast-flowing
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TABLE 1. PERCENTAGES OF DETRITAL ZIRCON U-Pb AGES

Colorado Plateau Sedimentary Strata and Colorado River

Lower Paleozoic Upper Pateozoic Triassic Lower-Middie Upper Jurassic— Holocene Colorado
Jurassic Cretaceous River
Data source* 1 1 2 3 4 5
Samples/analyses 8/789 18/1880 11/991 17/1560 21/1990 5/558
<65 0.0 0.0 0.0 0.0 0.0 3.0
65-85 0.0 0.0 0.0 0.0 0.1 2.3
85-145 0.0 0.0 0.0 0.0 1.6 2.2
145-200 0.0 0.0 0.0 2.2 6.6 3.2
200-300 0.0 0.3 8.1 6.8 5.1 3.6
300-900 1.6 14.2 28.8 26.0 16.7 20.1
800-~-1100 24 173 17.0 18.3 134 9.0
1100~1300 2.2 14.8 17.6 16.9 15.4 9.3
1300-1550 28.1 12.8 13.2 8.5 1.5 12,5
1550-1800 57.2 23.6 6.9 77 18.7 26.7
>1800 8.5 17.0 8.7 13.5 1.3 8.1
Southern California Sedimentary Strata
Triassic-Lower Cenomanian— Maastrichtian— Lower to middle Upper Eocene— Miocene-Pliocene
Cretaceous Campanian Paleocene Eocene Oligocene
Data source* 6,7 7 7 7.8 9 10
Samples/analyses 7/700 42/1186 30/582 32/1218 22/1378 41/2298
<65 0.0 0.0 0.0 0.6 0.6 2.7
65-85 0.0 5.7 21.8 14.7 19.5 10.3
85-145 0.9 82.0 45.6 31.2 27.9 335
145-200 5.3 5.4 7.7 20.4 13.6 11.5
200-300 25.7 0.9 5.0 7.3 37 9.9
300-900 18.7 05 0.2 0.4 0.7 03
900-1100 15.0 04 0.2 0.6 0.6 0.1
1100-1300 9.4 0.8 1.2 24 27 11.6
13001550 8.7 1.4 2.2 76 10.2 7.2
1550-1800 11.6 24 15.1 14.3 19.2 12.4
>1800 4.7 0.3 0.7 1.1 1.3 0.5

*Data sources: 1—Gehrels et al. (2011), 2—Dickinson and Gehrels (2008a), 3—Dickinson and Gehrels (2009), 4—Dickinson and Gehrels (2008b), 5—Kimbrough et al.
(2010), 6~this study, 7—Jacobson et al. (2011), 8—Lechter and Niemi (2011), 9—Spafford (2010), 10—~this study. Shading indicates Grenville ages.

rivers may have originated in eastern California
(Davis et al., 2010; Wernicke, 2011).

Our detrital-zircon data indicate that no sig-
nificant Colorado Plateau—derived detritus was
deposited in southern California by an Arizona
river (Figs. 2B-2F). The 6662 detrital-zircon
U-Pb ages from 167 broadly distributed Upper
Cretaceous to Pliocene samples from coastal
southern California contain 44%—88% Creta-
ceous (65-145 Ma) zircon, 6%—28% Jurassic
and Permian-Triassic (145-300 Ma) zircon, and
4%—-29% middle Proterozoic (1300-1800 Ma)
zircon, but only 0.4%—1.3% of the 300-1100 Ma
grains that arc so abundant in Colorado Platcau
strata (Table 1). These minor amounts are readily
cxplained by recycling of pre-Cretaccous sedi-
mentary rocks in southern California (Fig. 2G).
No Upper Cretaceous to Pliocene sample from
coastal California contains >2% 300-1100 Ma
zircon. This includes all Eocene to lower Mio-
cene samples of extraregional detritus (Sespe
River and its precursors), which contain <1%
300-1100 Ma zircon.

CONCLUSIONS

Age distributions of detrital zircons from
southern California document changing drainage
patterns of the southwestern United States for the

GEOLOGY | March 2013 | www.gsapubs.org

Mesozoic and Cenozoic. Distinctive age distribu-
tions of detrital zircons similar to those of upper
Paleozoic and Mesozoic strata of the Colorado
Plateau are evident in Triassic through Lower
Cretaceous strata of coastal California, but are
not found in any younger strata. This indicates
the absence of any drainage connection between
coastal southern California and the Colorado
Plateau region since the mid-Cretaceous, in con-
tradiction of a hypothetical southwest-flowing
Arizona River during the Paleogene (i.e., Wer-
nicke, 2011) to partially cut Grand Canyon. Gur
observations are most consistent with rapid latest
Miocene-Pliocene integration of the Colorado
River (e.g., Spencer and Pearthree, 2001; Dorsey,
2010; Kimbrough ct al., 2010; Dorscy et al.,
2011) and rapid cutting of Grand Canyon since
that time (c.g., Karlstrom ct al., 2007, 2008).
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