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ABSTRACT

Unconformity-related hydrothermal ore deposits typically form by mixing of hot, deep,
rock-buffered basement brines and cooler fluids derived from the surface or overlying sedi-
ments. Current models invoking simultaneous downward and upward flow of the mixing
fluids are inconsistent with fluid overpressure indicated by fracturing and brecciation, fast
fluid flow suggested by thermal disequilibrium, and small-scale fluid composition variations
indicated by fluid inclusion analyses. We propose a new model where fluids first descend, then
evolve while residing in pores and later ascend. We use the hydrothermal ore deposits of the
Schwarzwald district in southwest Germany as an example. Oldest fluids reach the greatest
depths, where long residence times and elevated temperatures allow them to equilibrate with
their host rock, to reach high salinity, and to scavenge metals. Youngest fiuids can only pen-
etrate to shallower depths and can (partially) retain their original signatures. When fluids are
released from different levels of the crustal column, these fluids mix during rapid ascent in
hydrofractures to form hydrothermal ore deposits. Mixing from below during ascent provides
a viable hydromechanical mechanism to explain the common phenomenon of mixed shallow
and deep fluids in the formation of hydrothermal ore deposits.

INTRODUCTION

Mixing of fluids from different origins is
often invoked for major unconformity-related
hydrothermal ore deposits that have formed in a
variety of geological contexts, such as the world-
class uranium deposits of the Athabasca Basin
(Canada) and McArthur River (Australia), and
the Pb-Zn(-Ag) deposits of the Irish Midlands,
the Alaskan Brooke Range (USA), the Massif
Central (France), and Upper Silesia (Poland),
among others. Geochemical evidence for fluid
mixing comes from stable and radiogenic iso-
tope signatures, mineral composition data, and
fluid-inclusion compositions, including halo-
gen ratios (Goldhaber et al., 1995; Staude et
al., 2009, 2012; Boiron et al., 2010; Wilkinson,
2010; Kendrick et al., 2011; Fusswinkel et al.,
2013). Mesozoic, unconformity-related hydro-
thermal deposits of the Schwarzwald district
in southwest Germany are representative of
a large range of deposits where mixing of (1)
hot, basement-derived fluids from below and
(2) cooler, surface or sediment-derived fluids
from above is invoked in the absence of igneous
activity to drive fluid circulation (Staude et al,,
2009, 2012, and references therein). Fluid circu-
lation driven by topography or igneous activity
can be excluded for the Mesozoic deposits in the
Schwarzwald (Staude et al., 2009, 2012).

Although the geochemical evidence of mix-
ing processes appears undeniable, it is unclear
how the mixing process proceeds physically.
Some authors propose fluid-flow trajectories
that converge on the ore deposition site, where
mixing takes place (e.g., Boiron et al., 2010;

[GEOLOGY. December 2014; v. 42; no. 12; p. 1035-1038; Data Repository item 2014359 | doi:10.1130/G35708.1 | Published oniine 15 October 2014

Kendrick et al., 2011). This would imply a local
low in the hydraulic head field, violating the
condition of a divergence-free potential field in
the absence of fluid sinks (Bons et al., 2012).
Even if such a low would occur by dilation, it
would only be transient, as the influx of fluids
would quickly raise the local hydraulic head.

Large-scale fluid circulation has been pro-
posed and modeled to explain the infiltration
of surface-derived fluids down to mid-crustal
levels (e.g., Matthii et al., 2004; Oliver et al,,
2006a; Person et al., 2007). However, these
models assumed a hydrostatic background fluid
pressure gradient throughout the whole system,
necessary to achieve convection, but unrealistic
at depths where rocks mainly deform by duc-
tile flow and cannot maintain large differences
between hydrostatic fluid pressure and litho-
static pressure (~100 MPa and 270 MPa at 10
km depth, respectively). Compaction and frac-
ture sealing would reduce porosity and perme-
ability at such depths, and fluid pressure would
rise. In the models, permeability and porosity
are usually kept constant, ignoring these effects.
Hydrothermal ore deposits typically show evi-
dence of fluid overpressure, such as repeated
fracturing and brecciation (Cox, 2010; Weisheit
et al., 2013). Fluid overpressure is difficult to
reconcile with a fluid pressure gradient that is
overall close to hydrostatic, or with convergent
fluid flow.

Hydrothermal fluids are, by definition (Davies
and Smith, 2006), hotter than their surroundings.
In the case of slow fluid percolation, fluid and
matrix temperatures remain in local equilibrium

© 2014 Geological Society of America. For permission to copy, contact editing@geosociety.org.

(de Marsily, 1986). The average distance,<x>,
from a perturbation, over which heat diffuses,
by conduction alone, over a time interval, At,
is determined by the thermal diffusivity, here
taken as D, = 10~ m¥s, through:

(x)= DAt ()

Taking, for example, Ar = 800 k.y., as used
by Matthiii et al. (2004), gives <x> = 5 km. This
means that the elevated temperature found in a
hydrothermal deposit should spread over a few
kilometers, if duration of fluid flow is on the
order of hundreds of thousands of years. For the
thermal perturbation to spread over only a few
meters, i.e., <x> = 1 m, duration of fluid flow
should be on the order of 10 days at most. It
follows that flow rates must be more than six
orders of magnitude faster than assumed in clas-
sical percolative flow models, such as that of
Matthii et al. (2004), and that therefore Darcy
flow through porous media does not apply.
Instead, flow must occur in short bursts of
fracture flow (Bons, 2001; Bons and van Mil-
ligen, 2001). Fluid ascent in hydrofractures can
potentially reach velocities of meters per second
in the case of aqueous fluids (Dahm, 2000).
Minimum ascent velocities of >0.01 m/s were
estimated for natural veins from the Sanbagawa
belt in Japan (Okamoto and Tsuchiya, 2009)
and >1 m/s for fluidized hydrothermal breccia
pipes from Cloncurry, Australia (Oliver et al.,
2006b). With tectonic events leading to hydro-
thermal activity probably lasting hundreds of
thousands of years to even >100 m.y. (Weisheit
et al., 2013), and fluid flow events lasting on the
order of days, these bursts would occur months,
if not years, apart (Bons, 2001).

In summary, brecciation, indicating fluid
overpressure (except in the case of implosion
breccias), and strong thermal disequilibrium
(Wagner et al., 2010; Beaudoin et al., 2014),
indicating fast fluid flow, are incompatible with
common models of crustal-scale fluid circu-
lation. The hydrothermal ore deposits in the
Schwarzwald (Fig. 1A) show clear evidence for
fluid mixing (Fusswinkel et al., 2013). Staude et
al. (2009) argued that sufficient fluid volumes to
produce the deposits could have been released
from below the deposits. Here we propose a
new model integrating these observations and
accounting for transport and mixing in a physi-
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Figure 1. A: Simplified geological map of southern Schwarzwald district in southwestern
Germany (modified after Hann and Zedler, 2008), showing locations of study area and sam-
ple sites. B: CI/Br ratios versus salinity of fluid inclusions in hydrothermal veins at localities
shown in A. Colored squares are microthermometry and in-situ laser ablation-inductively
coupled plasma—-mass spectrometry data of fluid inclusions from a single quartz crystal
presented by Fusswinkel et al. (2013), showing sample-scale covariation of decreasing metal
contents with increasing CI/Br ratio. Open circles are for microthermometry and crush-leach
analyses on gangue minerals from several localities in the Schwarzwald district, encompass-
ing the same range in halogen ratios (see Table DR1 [see footnote 1]). C: Schematic diagram
illustrating fluid evolution in Schwarzwald basement and overlying Permian (P), Triassic (T),
and Jurassic (J) sediments, from first exhumation in the Permian (left) to Jurassic formation
of hydrothermal ore (right). Blue arrows show fluid pathways in space (vertical) and time
(horizontal). Oldest fluids (yellow) infiltrated in the Permian and penetrated deepest levels.
Triassic (green) and Jurassic (blue) fluids descended less and had shorter residence times.
Fractures tapped and mixed fluids from all levels of the crustal column during ore formation.

cally plausible way. Fluids first descended below
an unconformity and were later released and
expelled upwards, when mixing of fluids with
contrasting geochemical signatures occurred.

HYDROTHERMAL SYSTEMS OF THE
SCHWARZWALD DISTRICT

The Schwarzwald district in southwest Ger-
many combines a well-known, variable geology
with >1000 hydrothermal mineral deposits (Fig.
1A). It consists of Variscan basement (mostly
S-type granites and gneisses), which is uncon-
formably overlain by a 1.5-km-thick succession
of Permian—Triassic and Jurassic clastic sedi-
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ments and limestones. Of particular relevance
is a 250 Ma, ~100-m-thick evaporite sequence
(up to the halite stage) intercalated in the Trias-
sic limestones. Due to Paleogene tectonic tilt-
ing, the whole succession is exposed from the
Jurassic in the east down to ~2 km below the
unconformity in the southwest. The hydrother-
mal veins occur within both basement rocks and
the sedimentary cover. Formation ages indicate
hydrothermal activity since Variscan times,
peaking in the Jurassic, at which time the area
was covered by a shallow sea and no significant
tectonic or igneous activity is known (Staude et
al., 2009, and references therein).

The deposits are fracture-hosted veins with
breccias that indicate repeated fracturing and
mineral precipitation. There is no known sig-
nificant fault activity at the time of ore forma-
tion, and the deposits lack evidence for tectonic
movements along the fractures. This suggests
that space for mineral precipitation was pro-
duced by overpressured fluids. Fluid-inclusion
studies (Staude et al., 2012, and references
therein) demonstrate temperatures of ~150 +
50 °C for the Jurassic fluids. For veins formed
at 2-3 km depth, this is more than 50 °C hotter
than the country rock, while fluid pressure may
reach 20 MPa in excess of ambient pressure
(Baatartsogt et al., 2007).

Geochemical and isotopic data indicate mix-
ing of contrasting fluids that have characteris-
tics of typical basement brines and sedimentary
formation waters (Schwinn et al., 2006; Staude
et al., 2012; Fusswinkel et al., 2013). Fusswin-
kel et al. (2013) analyzed a single crystal in a
basement-hosted vein mineralization (I km
below the unconformity) of Jurassic age and
found evidence for mixing of two distinct fluid
end members (Fig. 1B). One is a hot, saline (22
+ 2 wi% NaCl + CaCl,), rock-buffered brine
with elevated base metal (Zn, Pb) content and
low CI/Br mass ratios (<100). The other end
member is equally saline, is metal poor, and
has high CI/Br ratios that indicate dissolution
of halite, for which the only candidates are the
Triassic evaporites. The data obtained by laser
ablation-inductively ~coupled  plasma—mass
spectrometry analysis of individual fluid inclu-
sions show a remarkable variation in fluid com-
position at the scale of individual growth zones.
Such variations could only have been recorded
if the different fluids had very little contact time,
and therefore flow rates were high, as diffusion
would have quickly equalized compositions
(cf. Equation 1). Crush-leach and microther-
mometry analyses on fluid inclusions in gangue
minerals in a number of ore deposits confirm
that the strongly varying CI/Br ratios and rela-
tively constant salinities are found throughout
the southern Schwarzwald (Fig. 1B; see the
GSA Data Repository' for methods, and Table
DR1 therein).

GETTING FLUIDS DOWN

Following the Variscan orogeny, the crystal-
line basement of the Schwarzwald was exhumed
during the Permian. Fluid inclusions in Permian
quartz (+ Sb) veins have low (0-5 wt%) salini-
ties and are mostly barren (Staude et al., 2009).
This indicates that fluids in the crystalline base-
ment were not yet saline and that the observed

IGSA Data Repository item 2014359, crush-leach
and microthermometry method and data, is available
online at www.geosociety.org/pubs/ft2014.htm. or
on request from editing@ geosociety.org or Docu-
ments Secretary, GSA, P.O. Box 9140, Boulder, CO
80301, USA.
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high salinities in Mesozoic fluids must have
developed later. The German Continental Deep
Drilling Project (KTB) encountered fluid-filled
porosity down to a depth of 9 km (Emmermann
and Lauterjung, 1997). From this, we infer that
the exhumed Schwarzwald basement would
have been infiltrated or soaked with fluids from
above, down to at least similar depths (~10 km),
starting in the Permian.

In the absence of a topographic drive, down-
flow may have been caused by desiccation of
fluids via mineral hydration reactions at depth
(Stober and Bucher, 2004; Bons and Gomez-
Rivas, 2013), causing a downward flux to
replenish consumed H,O. The source of these
fluids was initially surface fluid (rainwater or
seawater) and later fluids trapped in pores of
the overlying sediments. Desiccation and draw-
down would have caused a progressive increase
in salinity with depth, which is consistent with
the increase in salinity observed at the KTB site
{Emmermann and Lauterjung, 1997). The pro-
gressive increase in salinity and the correspond-
ing reduction of H,O activity, near-exhaustive
hydration of basement rocks, and/or reduction
of porosity and permeability by hydration reac-
tions can slow or even stop the process. Fluid
pressure can begin to rise and equilibrate with
the lithostatic pressure once it is no longer
reduced by H,0O consumption and/or perme-
ability is sufficiently reduced by compaction
and sealing. Over time, supra-hydrostatic fluid
pressure may thus develop at depth.

Ingression of fluids since late Variscan times
would have resulted in fluids increasing in age
with depth, with the oldest fluids at the base
of the column (Fig. 1C) being ~100 m.y. old
by the time of Jurassic ore formation. This is
a conceivable residence time for basement flu-
ids (Bottomley et al., 2002; Fehn and Snyder,
2005). These fluids modified their chemistry
by reactive interaction with their rock matrix,
while higher temperatures at depth allowed for
efficient uptake of metals by chloride complex-
ation (Yardley, 2005). This explains the low Na/
Ca ratio and elevated Pb and Zn concentrations
of the saline deep basement fluid end member
in the Schwarzwald (Fig. 1B; Fusswinkel et al.,
2013). The deep basement fluids are also char-
acterized by a low CI/Br ratio, typical of such
fluids worldwide (Bucher and Stober, 2010, and
references therein), which may be related to bit-
tern ingression (Boiron et al., 2010; Wilkinson,
2010) during deposition of the Triassic evapo-
rites or, alternatively, to leaching of basement
rocks (e.g., Bucher and Stober, 2010).

After ca. 250 Ma, fluids entering from above
were affected by the Triassic evaporites, which
would have given them a high salinity and high
CI/Br ratios (Bucher and Stober, 2010). With
older fluids already residing at depth, these
new fluids remained at shallower depths, where
cooler temperatures inhibited extensive fluid-
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rock interaction. They could thus preserve their
Triassic evaporite signature without significant
uptake of metals or exchange of alkalis. These
fluids constitute the saline, metal-poor, high Cl/
Br, high Na/Ca end member in the Schwarzwald
(Fig. 1B). Today, the upper crustal fluid system
in the Schwarzwald is still stratified, the upper-
most ~2 km being filled by a Ca-HCO, water
possibly related to carbonate dissolution at shal-
low depths; below this layer, typical continental
Na-Cl brines are still present today (Bucher and
Stober, 2010).

FLUID ASCENT AND MIXING

Fluid pressure in the crustal column increases
from hydrostatic at the top to close to lithostatic
at depth. Reduction of the overburden pressure,
i.e., decompression, does not, initially, change
the fluid pressure in pores as their volume
remains approximately the same (Staude et al.,
2009). This can cause the pore fluid pressure
to exceed the host rock pressure, leading to the
formation of fractures through which fluids can
escape. Decompression can result from erosion
or thinning of the crust, as well as crustal exten-
sion, where reduction of the horizontal stress
reduces the pressure, which is the mean of the
principal stresses. Staude et al. (2009) showed
that decompression by crustal extension and
thinning can provide sufficient fluids to produce
the Jurassic ore deposits in the Schwarzwald.

Initial microcracks link up, creating ever-
bigger fractures in a step-wise fashion, as
described for fluids and melt (Bons and van
Milligen, 2001). Once these hydrofractures,
filled with buoyant fluid, exceed a critical length
(on the order of tens of meters) they can become
“mobile” by upward tip propagation and ascend
rapidly through the crust (Weertman, 1971,
Bons, 2001). Fluid is released from different
levels of the column and expelled upwards.
Deeper fluids ascend through shallower parts of
the crust, causing mixing of fluids from various
levels. Mixing is expected to be variable, with
some batches quickly ascending without much
interaction with other fluids, while others may
merge and mix with other batches.

We suggest that ascending fluids are arrested
at shallow crustal levels where fluid pres-
sure is low, thus allowing fluids to spread into
joints and fractures, or discontinuities, such as
the post-Variscan unconformity. Bedding may
also stop propagation of hydrofractures (Bons,
2001). The arrested fluids are strongly out of
equilibrium with the conditions at their final
arrest level. Disequilibrium and mixing of flu-
ids with contrasting physicochemical properties
cause efficient precipitation of dissolved mineral
content to form ore deposits. The heterogeneous
fluid signatures reflect the range of fluids sam-
pled in the rock column below, as well as mix-
ing between deep fluids and the high-Cl/Br con-
nate fluids in near-hydrostatic fluid reservoirs at

shallow levels. Deposited minerals and metals
depend on the lithologies below, especially at
depth, where most elements are scavenged.

CONCLUSIONS

Mixing of fluids is common in unconformity-
related hydrothermal ore deposits. Using the
Schwarzwald district in Germany as an example,
we propose that fluids first infiltrate into base-
ment rocks from above. The oldest fluids reach
the greatest depth, where these can equilibrate
with their host rock and scavenge metals. The
youngest fluids carry and maintain the signature
of more recent sediments that were deposited
on top of the unconformity. Rapidly ascend-
ing hydrofractures tap fluids from all levels of
the infiltrated rock column, mixing these dur-
ing ascent. The resulting mineral deposits thus
show signatures of both fluid types. Separating
fluid descent and ascent in time and mixing flu-
ids during ascent provides a physically viable
mechanism that explains the mineralogical and
geochemical characteristics of the Schwarzwald
ore deposits and may be applicable to many
other unconformity-related hydrothermal ores.
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