

Calendar[§]

SHOP ONLINE > rock.geosociety.org/store/

GEOLOGY

GEOLOGY publishes timely, innovative, and provocative articles relevant to its international audience, representing research from all fields of the geosciences.

GEOLOGY (ISSN 0091-7613 USPS 994-580 CODEN GLGYB) is published monthly by the Geological Society of America, Inc. (GSA), with offices at 3300 Penrose Place, Boulder, Colorado, USA. Mailing address is P.O. Box 9140, Boulder, CO 80301-9140, USA. Periodicals postage paid at Boulder, Colorado, and at additional mailing offices. Postmaster: Send address changes to *Geology*, Sales & Service, P.O. Box 9140, Boulder, CO 80301-9140, USA.

Copyright © 2014, The Geological Society of America, Inc. (GSA). All rights reserved. Copyright not claimed on content prepared wholly by U.S. government employees within the scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in other subsequent works and to make unlimited photocopies of items in this journal for noncommercial use in classrooms to further education and science In addition, an author has the right to use his or her article or a portion of the article in a thesis or dissertation without requesting permission from GSA, provided the bibliographic citation and the GSA copyright credit line are given on the appropriate pages. For any other form of capture, reproduction, and/or distribution of any item in this journal by any means, contact: Permissions, GSA, P.O. Box 9140, Boulder, CO 80301-9140, USA, fax +1-303-357-1073, editing@ geosociety.org; reference Geology, ISSN 0091-7613. Permission is granted to authors to post the abstracts only of their articles on their own or their organization's Web site providing the posting includes this reference: "The full paper was published in the Geological Society of America's journal Geology, [include year, month, and page numbers, if known, where the article appears or will appear].'

GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, sexual orientation, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society.

SUBSCRIPTIONS for 2014 calendar year. GSA Members and Fellows: \$89 (print + online), \$89 (international print + online), \$60 (online only). GSA Student and K-12 Teacher Members: \$45 (print only; online included in membership). Nonmembers and institutions: \$965 (print + online). Details on subscription choices, formats, and pricing, at www.geosociety.org/pubs/. For all orders, call GSA Sales & Service at +1.888.443.4472 or +1.303.357.1000, or e-mail gsaservice@geosociety.org. Claims: for nonreceipt or damaged copies, please contact GSA Sales & Service. Claims are honored for one year; please allow sufficient delivery time (up to 8 weeks) for overseas copies.

GSA ONLINE

Organization home page: www.geosociety.org Journals and books: www.gapubs.org Manuscript submission: http://www.editorialmanager.com/geology/

MIX
Paper from
responsible sources
FSC® C006849

EDITORS

Rónadh Cox

Williams College, Massachusetts +1.413.597.2297 geolsoc@williams.edu

Robert Holdsworth

Durham University +44.191.33.42299 r.e.holdsworth@durham .ac.uk

Brendan Murphy

St. Francis Xavier University +1.902.867.2481 bmurphy@stfx.ca

James Spotila

Virginia Tech +1.540.231.2109 spotila@vt.edu

Ellen Thomas

Yale University +1.203.432.5928 Fax +1.203.432.3134 ellen.thomas@yale.edu

EDITORIAL BOARD

2012-2014

Michele Cooke
Eric Cowgill
Kliti Grice
Thomas A. Hickson
Melissa Lamb
Bill McClelland
Julian F. Menuge
John J. Walsh
Susan J. Webb
Kai Wünnemann
Douwe J.J. van Hinsbergen

GEOLOGY STAFF

Director of Publications

Jeanette Hammann

Managing Editor

Lyne Yohe lyohe@geosociety.org

Editorial Staff

Brooke Smith bsmith@geosociety.org

Production

Heather L. Sutphin

2013-2015

David L. Barbeau, Jr. Alexandru T. Codilean Graeme Eagles Caleb I. Fassett Eric C. Ferré Nicholas W. Hayman Katharine W. Huntington Mads Huuse Laurent Montesi Sean R. Mulcahy Ali Polat Brian Romans Terry L. Spell Eric Tohver Martin J. Van Kranendonk Brian J. Yanites

2014-2016

Dennis Brown
David Chew
Chris Clark
Cristiano Collettini
Giulio di Toro
Katy A. Evans
W. Ashley Griffith
Galen Pippa Halverson
David J. Prior
Ursula Röhl
Renata Schmitt
Caroline Slomp
Dena M. Smith
Debbie Thomas
Cees van Staal

GSA OFFICERS

Executive Director John W. Hess

President Harry McSween

Vice President Jonathan G. Price

Past President

Suzanne Mahlburg Kay

Treasurer

Bruce R. Clark

COUNCILORS

2011-2015

Janet S. Herman John M. Holbrook Robert J. Tracy

2012-2016

Isabel P. Montanez Marilyn J. Suiter William W. Simpkins

2013-2017

Elizabeth J. Catlos John J. Clague Neil Fishman

2014-2018:

Timothy J. Bralower Anke Friedrich Stephen G. Pollock

COVER: Hydrothermal breccia in the disused Teufelsgrund mine in the Schwarzwald ore district in southwestern Germany (47°50′43″N; 7°49′12″E). The deposit had been mined for lead, silver, copper, and fluorite since the 11th century. Clasts of altered wall rock appear to float in a matrix of mostly barite and fluorite. Width of view is ~80 cm. The formation of these deposits from rapidly ascending and mixing fluids is discussed in "Fluid mixing from below in unconformity-related hydrothermal ore deposits" by Bons et al., p. 1035–1038.

Photograph by: Paul Bons

Cover design by: Heather L. Sutphin

DECEMBER 2014 | VOLUME 42 | NUMBER 12

1027 High Arctic forests during the middle Eocene supported by moderate levels of atmospheric CO₂

Daniel P. Maxbauer, Dana L. Royer, and Ben A. LePage

1031 On the origin of recent intraplate volcanism in Australia

D. Rhodri Davies and Nicholas Rawlinson

1035 Fluid mixing from below in unconformity-related hydrothermal ore deposits

Paul D. Bons, Tobias Fusswinkel, Enrique Gomez-Rivas, Gregor Markl, Thomas Wagner, and Benjamin Walter

1039 Paleogeographic record of Eocene Farallon slab rollback beneath western North America

M. Elliot Smith, Alan R. Carroll , Brian R. Jicha, Elizabeth J. Cassel, and Jennifer J. Scott

1043 Multi-speleothem record reveals tightly coupled climate between central Europe and Greenland during Marine Isotope

Gina E. Moseley, Christoph Spötl, Anders Svensson, Hai Cheng, Susanne Brandstätter, and R. Lawrence Edwards

1047 Early evolution of the Pamir deep crust from Lu-Hf and U-Pb geochronology and garnet thermometry

Matthijs A. Smit, Lothar Ratschbacher, Ellen Kooijman, and Michael A. Stearns

1051 Images of surface volatiles in Mercury's polar craters acquired by the MESSENGER spacecraft

Nancy L. Chabot, Carolyn M. Ernst, Brett W. Denevi, Hari Nair, Ariel N. Deutsch, David T. Blewett, Scott L. Murchie, Gregory A. Neumann, Erwan Mazarico, David A. Paige, John K. Harmon, James W. Head, and Sean C. Solomon

1055 Probable patterns of gas flow and hydrate accretion at the base of the hydrate stability zone

Richard J. Davies, Jinxiu Yang, Richard Hobbs, and Ang Li

1059 Constraints on the recent rate of lunar ejecta breakdown and implications for crater ages

Rebecca R. Ghent, Paul O. Hayne, Joshua L. Bandfield, Bruce A. Campbell, Carlton C. Allen, Lynn M. Carter, and David A. Paige

1063 Measuring the time and scale-dependency of subaerial rock weathering rates over geologic time scales with ground-based lidar

Amit Mushkin, Amir Sagy, Eran Trabelci, Rivka Amit, and Naomi Porat

1067 Late Pilocene–Pleistocene expansion of C₄ vegetation in semiarid East Asia linked to increased burning

Bin Zhou, Chengde Shen, Weidong Sun, Michael Bird, Wentao Ma, David Taylor, Weiguo Liu, Francien Peterse, Weixi Yi, and Hongbo Zheng 1071 Linking rift propagation barriers to excess magmatism at volcanic rifted margins

Hannes Koopmann, Sascha Brune, Dieter Franke, and Sonja Breuer

1075 Temperature and leaf wax δ²H records demonstrate seasonal and regional controls on Asian monsoon proxies

Elizabeth K. Thomas, Steven C. Clemens, Warren L. Preil, Timothy D. Herbert, Yongsong Huang, Zhengyu Liu, Jaap S. Sinninghe Damsté, Youbin Sun, and Xinyu Wen

1079 A mechanism for construction of volcanic rifted margins during continental breakup

David G. Quirk, Alaister Shakerley, and Matthew J. Howe

1083 Probing large intraplate earthquakes at the west flank of the Andes

G. Vargas, Y. Klinger, T.K. Rockwell, S.L. Forman, S. Rebolledo, S. Baize, R. Lacassin, and R. Armijo

1087 From continent to intra-oceanic arc: Zircon xenocrysts record the crustal evolution of the Solomon island arc

Simon Tapster, N.M.W. Roberts, M.G. Petterson, A.D. Saunders, and J. Naden

1091 How is topographic simplicity maintained in ephemeral dryland channels?

Michael Bliss Singer and Katerina Michaelides

1095 How was the lapetus Ocean infected with subduction?

John W.F. Waldron, David I. Schofield, J. Brendan Murphy, and Chris W. Thomas

1099 Humming glaciers

David S. Heeszel, Fabian Walter, and Deborah L. Kilb

1103 Ocean acidification in the aftermath of the Marinoan glaciation

Frank Ohnemueller, Anthony R. Prave, Anthony E. Fallick, and Simone A. Kasemann

1107 Microdiamond discovered in the Seve Nappe (Scandinavian Caledonides) and its exhumation by the "vacuum-cleaner" mechanism

Jarosław Majka, Åke Rosén, Marian Janák, Nikolaus Froitzheim, Iwona Klonowska, Maciej Manecki, Vlasta Sasinková, and Kenta Yoshida

1111 RESEARCH FOCUS: MESSENGER Into Darkness

C. Neish

1113 Author Index

Fluid mixing from below in unconformity-related hydrothermal ore deposits

Paul D. Bons¹, Tobias Fusswinkel², Enrique Gomez-Rivas¹, Gregor Markl¹, Thomas Wagner², and Benjamin Walter¹¹Department of Geosciences, Eberhard Karls University Tübingen, Wilhelmstrasse 56, 72074 Tübingen, Germany ²Department of Geosciences and Geography, University of Helsinki, Gustaf Hällströmin katu 2a, Fl-00014 Helsinki, Finland ³Department of Geology and Petroleum Geology, School of Geosciences, King's College, University of Aberdeen, Aberdeen AB24 3UE, UK

ABSTRACT

Unconformity-related hydrothermal ore deposits typically form by mixing of hot, deep, rock-buffered basement brines and cooler fluids derived from the surface or overlying sediments. Current models invoking simultaneous downward and upward flow of the mixing fluids are inconsistent with fluid overpressure indicated by fracturing and brecciation, fast fluid flow suggested by thermal disequilibrium, and small-scale fluid composition variations indicated by fluid inclusion analyses. We propose a new model where fluids first descend, then evolve while residing in pores and later ascend. We use the hydrothermal ore deposits of the Schwarzwald district in southwest Germany as an example. Oldest fluids reach the greatest depths, where long residence times and elevated temperatures allow them to equilibrate with their host rock, to reach high salinity, and to scavenge metals. Youngest fluids can only penetrate to shallower depths and can (partially) retain their original signatures. When fluids are released from different levels of the crustal column, these fluids mix during rapid ascent in hydrofractures to form hydrothermal ore deposits. Mixing from below during ascent provides a viable hydromechanical mechanism to explain the common phenomenon of mixed shallow and deep fluids in the formation of hydrothermal ore deposits.

INTRODUCTION

Mixing of fluids from different origins is often invoked for major unconformity-related hydrothermal ore deposits that have formed in a variety of geological contexts, such as the worldclass uranium deposits of the Athabasca Basin (Canada) and McArthur River (Australia), and the Pb-Zn(-Ag) deposits of the Irish Midlands, the Alaskan Brooke Range (USA), the Massif Central (France), and Upper Silesia (Poland), among others. Geochemical evidence for fluid mixing comes from stable and radiogenic isotope signatures, mineral composition data, and fluid-inclusion compositions, including halogen ratios (Goldhaber et al., 1995; Staude et al., 2009, 2012; Boiron et al., 2010; Wilkinson, 2010; Kendrick et al., 2011; Fusswinkel et al., 2013). Mesozoic, unconformity-related hydrothermal deposits of the Schwarzwald district in southwest Germany are representative of a large range of deposits where mixing of (1) hot, basement-derived fluids from below and (2) cooler, surface or sediment-derived fluids from above is invoked in the absence of igneous activity to drive fluid circulation (Staude et al., 2009, 2012, and references therein). Fluid circulation driven by topography or igneous activity can be excluded for the Mesozoic deposits in the Schwarzwald (Staude et al., 2009, 2012).

Although the geochemical evidence of mixing processes appears undeniable, it is unclear how the mixing process proceeds physically. Some authors propose fluid-flow trajectories that converge on the ore deposition site, where mixing takes place (e.g., Boiron et al., 2010;

Kendrick et al., 2011). This would imply a local low in the hydraulic head field, violating the condition of a divergence-free potential field in the absence of fluid sinks (Bons et al., 2012). Even if such a low would occur by dilation, it would only be transient, as the influx of fluids would quickly raise the local hydraulic head.

Large-scale fluid circulation has been proposed and modeled to explain the infiltration of surface-derived fluids down to mid-crustal levels (e.g., Matthäi et al., 2004; Oliver et al., 2006a; Person et al., 2007). However, these models assumed a hydrostatic background fluid pressure gradient throughout the whole system, necessary to achieve convection, but unrealistic at depths where rocks mainly deform by ductile flow and cannot maintain large differences between hydrostatic fluid pressure and lithostatic pressure (~100 MPa and 270 MPa at 10 km depth, respectively). Compaction and fracture sealing would reduce porosity and permeability at such depths, and fluid pressure would rise. In the models, permeability and porosity are usually kept constant, ignoring these effects. Hydrothermal ore deposits typically show evidence of fluid overpressure, such as repeated fracturing and brecciation (Cox, 2010; Weisheit et al., 2013). Fluid overpressure is difficult to reconcile with a fluid pressure gradient that is overall close to hydrostatic, or with convergent

Hydrothermal fluids are, by definition (Davies and Smith, 2006), hotter than their surroundings. In the case of slow fluid percolation, fluid and matrix temperatures remain in local equilibrium

(de Marsily, 1986). The average distance, $\langle x \rangle$, from a perturbation, over which heat diffuses, by conduction alone, over a time interval, Δt , is determined by the thermal diffusivity, here taken as $D_T = 10^{-6}$ m²/s, through:

$$\langle x \rangle = \sqrt{D_{\mathsf{T}} \Delta t}. \tag{1}$$

Taking, for example, $\Delta t = 800$ k.y., as used by Matthäi et al. (2004), gives $\langle x \rangle \approx 5$ km. This means that the elevated temperature found in a hydrothermal deposit should spread over a few kilometers, if duration of fluid flow is on the order of hundreds of thousands of years. For the thermal perturbation to spread over only a few meters, i.e., $\langle x \rangle \approx 1$ m, duration of fluid flow should be on the order of 10 days at most. It follows that flow rates must be more than six orders of magnitude faster than assumed in classical percolative flow models, such as that of Matthäi et al. (2004), and that therefore Darcy flow through porous media does not apply. Instead, flow must occur in short bursts of fracture flow (Bons, 2001; Bons and van Milligen, 2001). Fluid ascent in hydrofractures can potentially reach velocities of meters per second in the case of aqueous fluids (Dahm, 2000). Minimum ascent velocities of >0.01 m/s were estimated for natural veins from the Sanbagawa belt in Japan (Okamoto and Tsuchiya, 2009) and >1 m/s for fluidized hydrothermal breccia pipes from Cloncurry, Australia (Oliver et al., 2006b). With tectonic events leading to hydrothermal activity probably lasting hundreds of thousands of years to even >100 m.y. (Weisheit et al., 2013), and fluid flow events lasting on the order of days, these bursts would occur months, if not years, apart (Bons, 2001).

In summary, brecciation, indicating fluid overpressure (except in the case of implosion breccias), and strong thermal disequilibrium (Wagner et al., 2010; Beaudoin et al., 2014), indicating fast fluid flow, are incompatible with common models of crustal-scale fluid circulation. The hydrothermal ore deposits in the Schwarzwald (Fig. 1A) show clear evidence for fluid mixing (Fusswinkel et al., 2013). Staude et al. (2009) argued that sufficient fluid volumes to produce the deposits could have been released from below the deposits. Here we propose a new model integrating these observations and accounting for transport and mixing in a physi-

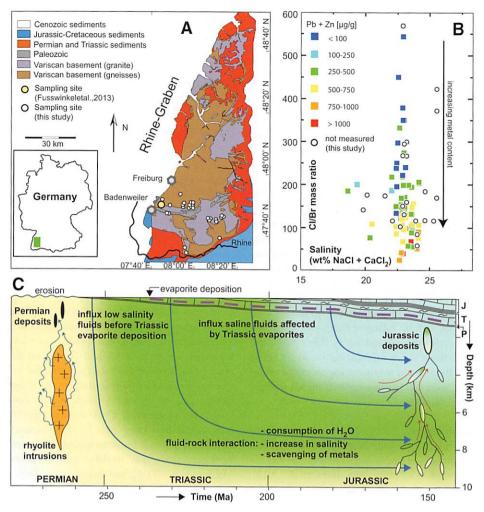


Figure 1. A: Simplified geological map of southern Schwarzwald district in southwestern Germany (modified after Hann and Zedler, 2008), showing locations of study area and sample sites. B: Cl/Br ratios versus salinity of fluid inclusions in hydrothermal veins at localities shown in A. Colored squares are microthermometry and in-situ laser ablation–inductively coupled plasma–mass spectrometry data of fluid inclusions from a single quartz crystal presented by Fusswinkel et al. (2013), showing sample-scale covariation of decreasing metal contents with increasing Cl/Br ratio. Open circles are for microthermometry and crush-leach analyses on gangue minerals from several localities in the Schwarzwald district, encompassing the same range in halogen ratios (see Table DR1 [see footnote 1]). C: Schematic diagram illustrating fluid evolution in Schwarzwald basement and overlying Permian (P), Triassic (T), and Jurassic (J) sediments, from first exhumation in the Permian (left) to Jurassic formation of hydrothermal ore (right). Blue arrows show fluid pathways in space (vertical) and time (horizontal). Oldest fluids (yellow) infiltrated in the Permian and penetrated deepest levels. Triassic (green) and Jurassic (blue) fluids descended less and had shorter residence times. Fractures tapped and mixed fluids from all levels of the crustal column during ore formation.

cally plausible way. Fluids first descended below an unconformity and were later released and expelled upwards, when mixing of fluids with contrasting geochemical signatures occurred.

HYDROTHERMAL SYSTEMS OF THE SCHWARZWALD DISTRICT

The Schwarzwald district in southwest Germany combines a well-known, variable geology with >1000 hydrothermal mineral deposits (Fig. 1A). It consists of Variscan basement (mostly S-type granites and gneisses), which is unconformably overlain by a 1.5-km-thick succession of Permian–Triassic and Jurassic clastic sedi-

ments and limestones. Of particular relevance is a 250 Ma, ~100-m-thick evaporite sequence (up to the halite stage) intercalated in the Triassic limestones. Due to Paleogene tectonic tilting, the whole succession is exposed from the Jurassic in the east down to ~2 km below the unconformity in the southwest. The hydrothermal veins occur within both basement rocks and the sedimentary cover. Formation ages indicate hydrothermal activity since Variscan times, peaking in the Jurassic, at which time the area was covered by a shallow sea and no significant tectonic or igneous activity is known (Staude et al., 2009, and references therein).

The deposits are fracture-hosted veins with breccias that indicate repeated fracturing and mineral precipitation. There is no known significant fault activity at the time of ore formation, and the deposits lack evidence for tectonic movements along the fractures. This suggests that space for mineral precipitation was produced by overpressured fluids. Fluid-inclusion studies (Staude et al., 2012, and references therein) demonstrate temperatures of ~150 \pm 50 °C for the Jurassic fluids. For veins formed at 2–3 km depth, this is more than 50 °C hotter than the country rock, while fluid pressure may reach 20 MPa in excess of ambient pressure (Baatartsogt et al., 2007).

Geochemical and isotopic data indicate mixing of contrasting fluids that have characteristics of typical basement brines and sedimentary formation waters (Schwinn et al., 2006; Staude et al., 2012; Fusswinkel et al., 2013). Fusswinkel et al. (2013) analyzed a single crystal in a basement-hosted vein mineralization (1 km below the unconformity) of Jurassic age and found evidence for mixing of two distinct fluid end members (Fig. 1B). One is a hot, saline (22 ± 2 wt% NaCl + CaCl₂), rock-buffered brine with elevated base metal (Zn, Pb) content and low Cl/Br mass ratios (<100). The other end member is equally saline, is metal poor, and has high Cl/Br ratios that indicate dissolution of halite, for which the only candidates are the Triassic evaporites. The data obtained by laser ablation-inductively coupled plasma-mass spectrometry analysis of individual fluid inclusions show a remarkable variation in fluid composition at the scale of individual growth zones. Such variations could only have been recorded if the different fluids had very little contact time. and therefore flow rates were high, as diffusion would have quickly equalized compositions (cf. Equation 1). Crush-leach and microthermometry analyses on fluid inclusions in gangue minerals in a number of ore deposits confirm that the strongly varying Cl/Br ratios and relatively constant salinities are found throughout the southern Schwarzwald (Fig. 1B; see the GSA Data Repository1 for methods, and Table DR1 therein).

GETTING FLUIDS DOWN

Following the Variscan orogeny, the crystalline basement of the Schwarzwald was exhumed during the Permian. Fluid inclusions in Permian quartz (± Sb) veins have low (0–5 wt%) salinities and are mostly barren (Staude et al., 2009). This indicates that fluids in the crystalline basement were not yet saline and that the observed

¹GSA Data Repository item 2014359, crush-leach and microthermometry method and data, is available online at www.geosociety.org/pubs/ft2014.htm, or on request from editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.

high salinities in Mesozoic fluids must have developed later. The German Continental Deep Drilling Project (KTB) encountered fluid-filled porosity down to a depth of 9 km (Emmermann and Lauterjung, 1997). From this, we infer that the exhumed Schwarzwald basement would have been infiltrated or soaked with fluids from above, down to at least similar depths (~10 km), starting in the Permian.

In the absence of a topographic drive, downflow may have been caused by desiccation of fluids via mineral hydration reactions at depth (Stober and Bucher, 2004; Bons and Gomez-Rivas, 2013), causing a downward flux to replenish consumed H₂O. The source of these fluids was initially surface fluid (rainwater or seawater) and later fluids trapped in pores of the overlying sediments. Desiccation and drawdown would have caused a progressive increase in salinity with depth, which is consistent with the increase in salinity observed at the KTB site (Emmermann and Lauterjung, 1997). The progressive increase in salinity and the corresponding reduction of H₂O activity, near-exhaustive hydration of basement rocks, and/or reduction of porosity and permeability by hydration reactions can slow or even stop the process. Fluid pressure can begin to rise and equilibrate with the lithostatic pressure once it is no longer reduced by H₂O consumption and/or permeability is sufficiently reduced by compaction and sealing. Over time, supra-hydrostatic fluid pressure may thus develop at depth.

Ingression of fluids since late Variscan times would have resulted in fluids increasing in age with depth, with the oldest fluids at the base of the column (Fig. 1C) being ~100 m.y. old by the time of Jurassic ore formation. This is a conceivable residence time for basement fluids (Bottomley et al., 2002; Fehn and Snyder, 2005). These fluids modified their chemistry by reactive interaction with their rock matrix, while higher temperatures at depth allowed for efficient uptake of metals by chloride complexation (Yardley, 2005). This explains the low Na/ Ca ratio and elevated Pb and Zn concentrations of the saline deep basement fluid end member in the Schwarzwald (Fig. 1B; Fusswinkel et al., 2013). The deep basement fluids are also characterized by a low Cl/Br ratio, typical of such fluids worldwide (Bucher and Stober, 2010, and references therein), which may be related to bittern ingression (Boiron et al., 2010; Wilkinson, 2010) during deposition of the Triassic evaporites or, alternatively, to leaching of basement rocks (e.g., Bucher and Stober, 2010).

After ca. 250 Ma, fluids entering from above were affected by the Triassic evaporites, which would have given them a high salinity and high Cl/Br ratios (Bucher and Stober, 2010). With older fluids already residing at depth, these new fluids remained at shallower depths, where cooler temperatures inhibited extensive fluid-

rock interaction. They could thus preserve their Triassic evaporite signature without significant uptake of metals or exchange of alkalis. These fluids constitute the saline, metal-poor, high Cl/Br, high Na/Ca end member in the Schwarzwald (Fig. 1B). Today, the upper crustal fluid system in the Schwarzwald is still stratified, the uppermost ~2 km being filled by a Ca-HCO₃ water possibly related to carbonate dissolution at shallow depths; below this layer, typical continental Na-Cl brines are still present today (Bucher and Stober, 2010).

FLUID ASCENT AND MIXING

Fluid pressure in the crustal column increases from hydrostatic at the top to close to lithostatic at depth. Reduction of the overburden pressure, i.e., decompression, does not, initially, change the fluid pressure in pores as their volume remains approximately the same (Staude et al., 2009). This can cause the pore fluid pressure to exceed the host rock pressure, leading to the formation of fractures through which fluids can escape. Decompression can result from erosion or thinning of the crust, as well as crustal extension, where reduction of the horizontal stress reduces the pressure, which is the mean of the principal stresses. Staude et al. (2009) showed that decompression by crustal extension and thinning can provide sufficient fluids to produce the Jurassic ore deposits in the Schwarzwald.

Initial microcracks link up, creating everbigger fractures in a step-wise fashion, as described for fluids and melt (Bons and van Milligen, 2001). Once these hydrofractures, filled with buoyant fluid, exceed a critical length (on the order of tens of meters) they can become "mobile" by upward tip propagation and ascend rapidly through the crust (Weertman, 1971; Bons, 2001). Fluid is released from different levels of the column and expelled upwards. Deeper fluids ascend through shallower parts of the crust, causing mixing of fluids from various levels. Mixing is expected to be variable, with some batches quickly ascending without much interaction with other fluids, while others may merge and mix with other batches.

We suggest that ascending fluids are arrested at shallow crustal levels where fluid pressure is low, thus allowing fluids to spread into joints and fractures, or discontinuities, such as the post-Variscan unconformity. Bedding may also stop propagation of hydrofractures (Bons, 2001). The arrested fluids are strongly out of equilibrium with the conditions at their final arrest level. Disequilibrium and mixing of fluids with contrasting physicochemical properties cause efficient precipitation of dissolved mineral content to form ore deposits. The heterogeneous fluid signatures reflect the range of fluids sampled in the rock column below, as well as mixing between deep fluids and the high-Cl/Br connate fluids in near-hydrostatic fluid reservoirs at shallow levels. Deposited minerals and metals depend on the lithologies below, especially at depth, where most elements are scavenged.

CONCLUSIONS

Mixing of fluids is common in unconformityrelated hydrothermal ore deposits. Using the Schwarzwald district in Germany as an example, we propose that fluids first infiltrate into basement rocks from above. The oldest fluids reach the greatest depth, where these can equilibrate with their host rock and scavenge metals. The youngest fluids carry and maintain the signature of more recent sediments that were deposited on top of the unconformity. Rapidly ascending hydrofractures tap fluids from all levels of the infiltrated rock column, mixing these during ascent. The resulting mineral deposits thus show signatures of both fluid types. Separating fluid descent and ascent in time and mixing fluids during ascent provides a physically viable mechanism that explains the mineralogical and geochemical characteristics of the Schwarzwald ore deposits and may be applicable to many other unconformity-related hydrothermal ores.

ACKNOWLEDGMENTS

This research was partly funded by German Research Foundation (DFG) grant BO 1776/8 and was carried out within the framework of DGMK (German Society for Petroleum and Coal Science and Technology) project 718, funded by the companies ExxonMobil Production Deutschland GmbH, GDF SUEZ E&P Deutschland GmbH, RWE Dea AG, and Wintershall Holding GmbH. Assistance by Simone Kaulfuss, Gabi Stoschek, Sara Ladenburger, Mathias Burisch, and Bernd Steinhilber with sample preparation and crush-leach analyses is gratefully acknowledged. We thank Steve Cox and two anonymous reviewers for their critical comments.

REFERENCES CITED

Baatartsogt, B., Schwinn, G., Wagner, T., Taubald, H., Beitter, T., and Markl, G., 2007, Contrasting paleofluid systems in the continental basement: A fluid inclusion and stable isotope study of hydrothermal vein mineralization, Schwarzwald district, Germany: Geofluids, v. 7, p. 123– 147, doi:10.1111/j.1468-8123.2007.00169.x.

Beaudoin, N., Bellahsen, N., Lacombe, O., Emmanuel, L., and Pironon, J., 2014, Crustal-scale fluid flow during the tectonic evolution of the Bighorn Basin (Wyoming, USA): Basin Research, v. 26, p. 403-435, doi:10.1111/bre.12032.

Boiron, M.C., Cathelineau, M., and Richard, A., 2010, Fluid flows and metal deposition near basement/cover unconformity: Lessons and analogies from Pb-Zn-F-Ba systems for the understanding of Proterozoic U deposits: Geofluids, v. 10, p. 270–292, doi:10.1111/j.1468-8123.2010.00289.x.

Bons, P.D., 2001, The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures: Tectonophysics, v. 336, p. 1-17, doi: 10.1016/S0040-1951(01)00090-7.

Bons, P.D., and Gomez-Rivas, E., 2013, Gravitational fractionation of isotopes and dissolved components as a first-order process in hydrothermal crustal fluids: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 108, p. 1195–1201, doi:10.2113/econgeo.108.5.1195.

- Bons, P.D., and van Milligen, B.P., 2001, New experiment to model self-organized critical transport and accumulation of melt and hydrocarbons from their source rocks: Geology, v. 29, p. 919–922, doi:10.1130/0091-7613(2001)029 <0919:NETMSO>2.0.CO;2.
- Bons, P.D., Elburg, M.A., and Gomez-Rivas, E., 2012, A review of the formation of tectonic veins and their microstructures: Journal of Structural Geology, v. 43, p. 33–62, doi:10.1016/j.jsg.2012 .07.005.
- Bottomley, D.J., Renaud, R., Kotzer, T., and Clark, I.D., 2002, ¹²⁹I constraints on residence times of deep marine brines in the Canadian Shield: Geology, v. 30, p. 587–590, doi:10.1130/0091 -7613(2002)030<0587:ICORTO>2.0.CO;2.
- Bucher, K., and Stober, I., 2010, Fluids in the upper continental crust: Geofluids, v. 10, p. 241–253.
- Cox, S.F., 2010, The application of failure mode diagrams for exploring the roles of fluid pressure and stress states in controlling styles of fracture-controlled permeability enhancement in faults and shear zones: Geofluids, v. 10, p. 217–233, doi:10.1111/j.1468-8123.2010.00281.x.
- Dahm, T., 2000, On the shape and velocity of fluidfilled fractures in the Earth: Geophysical Journal International, v. 142, p. 181–192, doi: 10.1046/j.1365-246x.2000.00148.x.
- Davies, G.R., and Smith, L.B., 2006, Structurally controlled hydrothermal dolomite reservoir facies: An overview: AAPG Bulletin, v. 90, p. 1641-1690, doi:10.1306/05220605164.
- de Marsily, G., 1986, Quantitative Hydrogeology: Groundwater Hydrology for Engineers: San Diego, California, Academic Press, Inc., 440 p.
- Emmermann, R., and Lauterjung, J., 1997, The German Continental Deep Drilling Program KTB:
 Overview and major results: Journal of Geophysical Research, v. 102, p. 18,179–18,201, doi:10.1029/96JB03945.
- Fehn, U., and Snyder, G.T., 2005, Residence times and source ages of deep crustal fluids: Interpretation of ¹²⁹I and ³⁶Cl results from the KTB-VB drill site, Germany: Geofluids, v. 5, p. 42–51, doi:10.1111/j.1468-8123.2004.00105.x.
- Fusswinkel, T., Wagner, T., Wälle, M., Wenzel, T., Heinrich, C.A., and Markl, M., 2013, Fluid mixing forms basement-hosted Pb-Zn deposits: Insight from metal and halogen geochemistry of individual fluid inclusions: Geology, v. 41, p. 679-682, doi:10.1130/G34092.1.
- Goldhaber, M.B., Church, S.E., Doe, B.R., Aleinikoff, J.N., Brannon, J.C., Podosek, F.A., Mosier, E.L.,

- Taylor, C.D., and Gent, C.A., 1995, Lead and sulfur isotope investigation of Paleozoic sedimentary rocks from the southern midcontinent of the United States: Implications for paleohydrology and ore genesis of the southeast Missouri lead belts: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 90, p. 1875–1910, doi:10.2113/gsecongeo.90.7.1875.
- Hann, H.P., and Zedler, H., 2008, Variscan internides: Black Forest (Schwarzwald), in McCann, T., ed., The Geology of Central Europe, Variscan Tectonics, Volume 1: Precambrian and Palaeozoic: London, Geological Society of London, p. 599-665.
- Kendrick, M.A., Honda, M., Oliver, N.H.S., and Phillips, D., 2011, The noble gas systematics of late-orogenic H₂O-CO₂ fluids, Mt Isa, Australia: Geochimica et Cosmochimica Acta, v. 75, p. 1428-1450, doi:10.1016/j.gca.2010.12.005.
- Matthäi, S.K., Heinrich, C.A., and Driesner, T., 2004, Is the Mount Isa copper deposit the product of forced brine convection in the footwall of a major reverse fault?: Geology, v. 32, p. 357-360, doi:10.1130/G20108.1.
- Okamoto, A., and Tsuchiya, N., 2009, Velocity of vertical fluid ascent within vein-forming fractures: Geology, v. 37, p. 563–566, doi:10.1130
- Oliver, N.H.S., McLellan, J.G., Hobbs, B.E., Cleverley, J.S., Ord, A., and Feltrin, L., 2006a, Numerical models of extensional deformation, heat transfer, and fluid flow across basement-cover interfaces during basin-related mineralization: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 101, p. 1–31, doi:10.2113/gsecongeo.101.1.1.
- Oliver, N.H.S., Rubenach, M.J., Fu, B., Baker, T., Blenkinsop, T.G., Cleverley, J.S., Marshall, L.J., and Ridd, P.J., 2006b, Granite-related overpressure and volatile release in the mid crust: Fluidized breccias from the Cloncurry District, Australia: Geofluids, v. 6, p. 346–358, doi:10.1111/j.1468-8123.2006.00155.x.
- Person, M., Mulch, A., Teyssier, C., and Gao, Y., 2007, Isotope transport and exchange within metamorphic core complexes: American Journal of Science, v. 307, p. 555–589, doi:10.2475 /03.2007.01.
- Schwinn, G., Wagner, T., Baatartsogt, B., and Markl, G., 2006, Quantification of mixing processes in ore-forming hydrothermal systems by combination of stable isotope and fluid inclusion analyses: Geochimica et Cosmochimica

- Acta, v. 70, p. 965–982, doi:10.1016/j.gca.2005.10.022.
- Staude, S., Bons, P.D., and Markl, G., 2009, Hydrothermal vein formation by extension-driven dewatering of the middle crust: An example from SW Germany: Earth and Planetary Science Letters, v. 286, p. 387-395, doi:10.1016/j .epsl.2009.07.012.
- Staude, S., Mordhorst, T., Nau, S., Pfaff, K., Brügmann, G., Jacob, D.E., and Markl, G., 2012, Hydrothermal carbonates of the Schwarzwald ore district, southwestern Germany: Carbon source and conditions of formation using δ¹⁸O, δ¹³C, *⁷Sr/*⁶⁸Sr, and fluid inclusions: Canadian Mineralogist, v. 50, p. 1401–1434, doi: 10.3749/canmin.50.5.1401.
- Stober, I., and Bucher, K., 2004, Fluid sinks within the Earth's crust: Geofluids, v. 4, p. 143–151, doi:10.1111/j.1468-8115.2004.00078.x.
- Wagner, T., Boyce, A.J., and Erzinger, J., 2010, Fluid-rock interaction during formation of metamorphic quartz veins: A REE and stable isotope study from the Rhenish Massif, Germany: American Journal of Science, v. 310, p. 645-682, doi:10.2475/07.2010.04.
- Weertman, J., 1971, Velocity at which liquid-filled cracks move in the Earth's crust or in glaciers: Journal of Geophysical Research, v. 76, p. 8544–8553, doi:10.1029/JB076i035p08544.
- Weisheit, A., Bons, P.D., and Elburg, M.A., 2013, Long-lived crustal-scale fluid-flow: The hydrothermal mega-breccia of Hidden Valley, Mt. Painter Inlier, South Australia: International Journal of Earth Sciences, v. 102, p. 1219– 1236, doi:10.1007/s00531-013-0875-7.
- Wilkinson, J.J., 2010, A review of fluid inclusion constraints on mineralization in the Irish ore field and implications for the genesis of sediment-hosted Zn-Pb deposits: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 105, p. 417–442, doi: 10.2113/gsecongeo.105.2.417.
- Yardley, B.W.D., 2005, Metal concentrations in crustal fluids and their relationship to ore formation: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 100, p. 613-632, doi:10.2113/gsecongeo.100.4.613.

Manuscript received 25 March 2014 Revised manuscript received 1 September 2014 Manuscript accepted 3 September 2014

Printed in USA