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" CONTINENTAL SUBDUCTION IN THE NORTHERN

U.S. ROCKIES — A MODEL FOR BACK-ARC THRUSTING

IN THE WESTERN CORDILLERA
ROBERT SCHOLTEN'

ABSTRACT
!

Back-arc thrusts such as those of the western Cordillera are difficult to explain mechanically as overthrusts
resulting directly from oceanic subduction, which would require transmission of tectonic stress through the weak
magmatic core of the orogen. Also, increasing of basement rooting of major thrusts requires a reassessment of
models of gravitational tectonics by spreading or gliding.

A model of westward subduction of the relatively heavy continental lithosphere beneath the geoclinal edge of the
continent eliminates the problem of stress transmission. Eastward migration of underthrusts occurs both through
the basement and along supracrustal decollement surfaces. The developing thrust belt inherits. ancient transverse
faults in the continental crust as well as the arcuate outlines of the old geoclinal hinge. In southwestern Montana
paired thrust belts reflect paired Paleozoic hinges. Tectonic and topographic highlands in the rear of the thrust belt,
to which widespread synorogenic conglomeratas bear testimony, resuit from great uplift due to the buoyance of sub-
ducted crustal slices that became decoupled from the sinking upper mantie in the hot core of the orogen.

The petroleum potential of the foreland thrust belt in southwest Montana, and perhaps elsewhere as well, must
be evaluated in terms of basement rooting of at least some of the thrusts and of significant changes in facies and
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structural patterns across east-west faults.

INTRODUCTION

The kinematics and dynamics of large scale “foreland” or
“back-arc” overthrusting have long constituted a major prob-
lem in geotectonics. In the years preceding and shortly after
World War Il such thrust belts were variously seen as a by-
product of (1) continental collision and underthtusting (Argand,
1924; Kober, 1923), or a related concept referred to as “Unter-
stromung” or underflow in the European literature (Ampferer,
1923, 1924; Kraus, 1951); (2) the final collapse of elongate crust-
al downbuckles or “tectogenes” (Vening Meinesz, 1933; Griggs,
1939; Umbgrove, 1947); or (3) gravitational tectonics, either by
shallow gliding (Gignoux, 1948, 1950; Tercier, 1950; de Sitter,
1950) or deep mass readjustments (van Bemmelen, 1932,
19333, 1933b).

With the advent of modemn global tectonics it became pos-
sible to reassess thrust beits in terms of horizontal plate mo-
tions. Thus, continent-directed thrusting in the Tethys beit could
again be understood as a product of continental collision, much
as it was in the heyday of continental drift, and recognition of
pre-Mesozoic plate motions made it possible to apply this
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model to other orogens as well, including the Alleghanian and
Hercynian in North American and Eurafrica. For asymmetric -
situations in which a contnental mass is lacking on one side of
the orogen, as in the case of the circum-Pacific beit, the new
models returned to the notion of oceanic underthrusting once
advocated by Umbgrove (1947) and now placed in the context
of ocean spreading and subduction. This accounts weil for
ocean-directed thrusts on the oceanic side of the mobile mag-
matic arc, while the related concept of obduction can explain
continent-directed thrusts involving oceanic rocks. What re-
mained problematic, however, was the genesis of continent-
directed thrust beits in the back-arc environment. Their posi-
tion inland from structurally weak magmatic arcs (Fig. 1)
makes it difficult to see these belts as still another product of
ocean plate subduction , especially where distance from the
continental edge amounts to hundreds of kilometers. The Cor-
dilleran foreland thrust belt of western North America is a case
in point. The general problem is here considered with this beit,
and in particular its Montana-ldaho segment, as a test case.

BACKGROUND

More than 30 years ago, Eardley (1951, p. 311, 315, Fig. 176)
pointed out that the eastern Corditleran thrust front between
Nevada and Alaska follows in a general way two great arcs
with eastward convexity (Fig. 2). Elaborating on this obser-
vation and taking note of the spatial relation between the fron-
tal thrust zone and the eastemn hinge of the Proterozoic to Pal-
eozoic geosyncline, | proposed a genetic model involving pro-
gressive underthrusting of a westward drifting North American
craton beneath the eastern basement flank of the Cordilleran
geosyncline (Scholten, 1956, 1957). Consideration of the prob-
lem of the transmission of forces led Misch (1960) to strong ad-
vocacy of the concept of continental underthrusting. In Can-
ada, this concept was suggested by Baily, Gordy and Stewart
(1966), who presented seismic evidence that the foreland
thrusts are confined to the sedimentary strata of Proterozoic
and younger age.
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Tectonic map of the westem Cordillera, showing deformed
western beit and eastem “geosynclinal Rockies”, sep-
arated from craton and “shelf Rockies” by geosynciinal
hinge zone. Dotted and boid lines indicate structural
trends (fold patterns and major thrust zones). Batholiths
shown in black. Note some of the transverse fauits in
S.W. Montana (WC = Willow Creek fault zone; HP =Horse
Prairie fault zone). Adapted from Eardley (1962, Fig. 21.1).

By contrast, Price and Mountjoy (1970; Price, 1973) argued in
favor of a genesis by lateral gravitational spreading away from
the high central mobile core west of the Canadian foreland
thrust belt. The spreading model was supported by Elliot
1976a, 1976b) who placed it on a basis of quantitative me-
chanics. Hubbert and Rubey (1959; Rubey and Hubbert,1959),
on the other hand, suggested a process of downslope gliding
as at least a partial solution to the mechanical problem pre-
sented by major overthrusts. In both the spreading and gliding
models the problem is circumvented or reduced through the
application of the gravitational body force.

As to the specific region east of the idaho batholith, | came
to believe that the crystalline rocks exposed in the southwest
Montana sector of the thrust belt were emplaced by high-angle
upthrusts rather than low-angle overthrusts. Documentation of
abnormal internal complexity of the thrust sheets and of an ex-
ceptionally high mid-Cretaceous uplift of Proterozoic rocks in
central Idaho led to a model of gravitational gliding down the
east flank of the uplift (Schoiten, 1968, 1973; Ryder and Schol-
ten, 1973). The 15-20km uplift was thought to have been caused
by a combination of crustal thickening, thermal expansion and
phase changes, laccolithic doming, and isostatic rebound up-
on erosion. In passing, plate underthrusting was suggested as
the deep-seated ultimate process that triggered this unwinding
sequence of shallowner mass displacements, leading to even-
tual re-establishment of gravitative equilibrium.

Farther south in the Cordilleran thrust belt, gravitational tec-
tonics was invoked in models presented by Crosby (1968), Rob-
erts and Crittenden (1973) and Hose and Danes (1973). Other
writers followed Misch (1960) in viewing continental under-

Figure2. Double arcuate outline of back-arc (foreland) thrust front
of the western Cordillera. Note spatial relation of the
idaho batholith and the transverse faults shown in Figure
1 to the arc intersection.

thrusting as the direct cause of the Cordilleran thrust beit Burch-
fiel and Davis, 1972, 1975; Coney, 1972, 1973; Dickinson, 1976;
Loweil, 1977; Blackstone, 1977).

In recent years, attention has again been drawn to the pres-
ence of basement rocks in low-angle back-arc thrust sheets .
in the southern, central, and northern Rockies. Also, transverse
fault zones segmenting the thrust beit have lately come to be
recognized as a significant structural element controlling the
development of the thrusts. This information is discussed be-
low. It invites a reassessment of the notions of tectogenesis by
rooted overthrusting, crustal underthrusting, or gravity as pre-
sented in earlier modeils. Such a reassessment is the purpose
of this paper. It brings into focus the process of continental
subduction as the fundamental lithospheric mechanism re-
sponsible for back-arc thrusting.

BASEMENT THRUSTS

In the northern U.S. Rockies the foreland thrust belt emerges
with a NNW trend from beneath the thick and extensive cover
of late Cenozoic volcanics in the eastern Snake River piain.
In extreme SW Montana the thrust belt bifurcates into a west-
em zone, which passes with a northerly trend between the ida-
ho and Boulder batholiths (Fig. 1), bounding the Sapphire thrust
plate, and an eastern zone, whose trend veers to the northeast.
in the region where the bifurcation occurs, crystalline (Precam-
brian X) basement rocks are exposed along NNW to N trending
thrusts in the Tendoy and Beaverhead ranges (Fig. 3). The base-
ment faults in the Tendoy Range were considered to be low-
angle overthrusts by Kupsch (1850) and Scholten (1950: Schol-
ten, Keenmon and Jupsch, 1955), but were fater thought of as
steep upthrusts (Schoiten, 1973). Recent detailed work by Du-
bois (1981a, 1981b; this volume) has conclusively demonstrated
that the basement biocks in the northern Tendoy Range are
bounded by low-to medium-angle thrusts, and in places occur
as klippen resting on Devonian sediments (Fig. 3). These faults
are interpreted as disjointed parts or imbrications of a single
folded basement ovethrust whose trace in the northem Ten-
doys follows the looping pattern shown on the simplified map
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Figure 3. Simpiified geologic map of the Beaverhead and Tendoy ranges in southwest Montana and adjacent Idaho.
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Figure 4. Stripped structure map of region of Figure 3, showing only Precambrian rocks.
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of Figure 4 and whose continuation along strike is the Cabin
thrust, mapped farther south in the range by Schoiten, Keen-
mon and Kupsch (1955). In 1979 a well (Kenneth Luff Inc. No. 1
Hansen), drilled in the narrow basin between the northern Ten-
doys and the Maiden Peak prong of the Beaverhead Range to
the west (Fig. 3), passed through 700 feet of Precambrian gneiss

and fault breccia below Tertiary rocks, and at 7090 feet entered

into Devonian dolomite and anhydrite. The same gneiss makes
up a large part of the Maiden Peak prong (M'Gonigle, 1965), and
it may be concluded that the rocks of the Beaverhead Range
are likewise allochthonous above the Cabin thrust in this area.
The displaced rocks form part of the regional Medicine Lodge
allochthon of Ruppel (1978; Ruppel and others, 1981), one of
several major thrust plates in this part of the U.S. Rockies. The
fundamentai fauit at the sole of this plate thus lies in the base-
ment and is none other than the Cabin thrust (rather than the
originally more restricted “Medicine Lodge thrust” of Kirkham,
1927, which involves Phanerozoic rocks only).

The Tendoy thrust, carrying the Tendoy allochthon, is the
easternment fault in Figure 3 and the easternmost exposed
NW-trending fault in this segment of the thrust belt (Schoiten,
Keenmon and Kupsch, 1955; Skipp and Hait, 1977). Hammons
(1981) has shown its nature to be that of a low-angle overthrust.
it continues northward beyond the tip of the Tendoy Range,
where its rooted nature is indicated by the fact that it brings up
the Precambrian gneiss of the Amrmstead Hills (Figs. 3 and 4).
By contrast, the Cabin thrust does not project northward into
the Armstead Hills, but seems to terminate at a transverse fault
in the basin of Horse Prairie Creek (HP in Fig. 1). North of the
basin the Grasshopper piate of Ruppel and others (1981) is em-

piaced upon the frontal thrust zone, and the westermost ex- -

posure of Precambrian gneiss (Fig. 3) is bounded by the Bloody
Dick thrust. The fauits north and south of Horse Prairie basin
are not offset representatives of one another, but clearly be-
long to separately developed systems.

in the near absence of Precambrian X basement exposure
elsewhere in the northern Rockies it is difficult to assess how
many of the foreland thrusts are rooted in the crystailine crust.
In the northward continuation of the thrust belt into the area
between the Idaho and Boulder batholiths (Fig. 1), low-angie
Philipsburg, Georgetown, Princeton, and other thrusts (Em-
mons and Calkins, 1913; Baken, 1981) involve Proterozoic sedi-
ments, but no metamorphic basement is exposed. In the rear
of the thrust belt, however, an important thrust of continental
Precambrian crystalline rocks has been reported in the Pioneer
Range of central Idaho by Dover (1980). Farther north, interpret-
ations of geophysical data led Harrison, Kleinkopf and Wells
(1980) to believe that the extensive Belt terrane of northemn Id-
aho and northwestern Montana is cut by numerous thrusts that
are rooted in the crystalline crust.

The NE-trending bifurcation of the thrust belt in southwest
Montana (Fig. 1) splits off as the Snowcrest-Greenhorn thrust
system of Perry, Ryder and Maughan (1981), which incorpor-
ates the exposed Snowcrest thrust (Kieper, 1950) and the geo-
physically and stratigraphically inferred sub-Snowcrest Range
thrust. Both are basement faults. Farther north, two gently NW-
dipping thrusts, at least one of which involves Precambrian X
metamorphic rocks, have been reported in the western flank of
the Tobacco Root Mountains by Samueison and Schmidt (1981).
Northest of this, Schmidt and Hendrix (1981) describe the more
easterly trending Cave and Jefferson Canyon faults in SW-cen-
tral Montana, interpreted as “tear thrusts” with oblique slip. The
Jefferson Canyon fault has a basement exposure on its up-
thrown side, and appears to be a reactivation of the Protero-
zoic Willow Creek fault (WC in Fig. 1), which controlled the

south edge of the great Belt embayment in central Montana,
and the deposition of the conglomeratic LaHood facies of the
Belt Supergroup (Robinson, 1963; McMannis, 1963). The Jeffer-
son Canyon fault is inferred to bend back to a northeast trend
at its eastern end and connect with the Lombard thrust east of
the Boulder batholith (Schmidt and Hendrix, 1981; Robinson,
1963). The Lombard thrust is the sole fauit of the Elkhom thrust
plate of Ruppel and others (1981). It bends sharply to a north-
westerly trend south of the transverse Lewis and Clark fault
zone (Fig. 1). Along strike, the thrusts of the Montana Disturbed
Belt trend NW-ward toward the area of the Lewis and related
overthrusts and on into Canada. Neither the Lombard thrust,
nor those farther north are known to be rooted in basement,
though the gravity and magnetic data of Harrison, Kieinkopf
and Wells (1980) suggest the Lewis thrust is.

In the central to southem U.S. Rockies Precambrian meta-
morphic rocks in northeast Utah are carried eastward by the
Taylor thrust (Crittenden, 1972). Royse, Warner and Reese (1975)
suggest that, in addition, the Absaroka thrust may be rooted in
basement. Burchfiel and Davis (1968a, 1972; Davis and Burch-
fiel, 1971), Fleck (1970, 1971), and Wright and others (1981; Wright,
1982) have described thrusting of the basement along the east-
em margin of the southern Cordillera.

In other segments of the Cordilleran fold and thrust belt, in
particular Canada (Bally, Gordy and Stewart, 1966), and south-
west Wyoming and southeast Idaho (Royse, Warner and Reese,
1975), seismic evidence shows basement to be undisturbed.
Some writers have argued that basement become invoived only
in special paleotectonic situations. Beutner (1977) sees such
a situation in westward-jutting promontories of the craton, one
of which occurs in southwest Montana. Armstrong (1975) re- -
lates the basement thrusts in that area to the postulated exist-
ence of a basement uplift, the Salom River arch, in north-cenral
and east-central Idaho. Eastward rising thrusts are thought to
have cut through these buttresses. If so, one must accept that
decollement thrusts cut stratigraphically downward into crystal-
line crust in the direction of transport, and then upward again
into the sedimentary pile. As to the Salom River arch, the real-
ity of its existence has been placed into doubt by Evans (1981;
Evans and Lund, 1981). In any case, a “buttress” explanation
would not readily apply to basement thrusts presumed to exist
in northwest Montana and northemn idaho, or known to exist in
central Idaho.

That many known foreland thrusts, in the western Cordillera
as elsewhere, unite into one or a few major decollement sur-
faces at, or above, the top of the basement remains a fact of
great importance. The data available suggest, however, that
basement rooting of major thrusts may be more common in
this back-arc setting than generally believed, which places con-
straints on any overaily genetic model.

TRANSVERSE FAULTS
The existence of major east-west faults has long been re-
cognized in the structural pattern of southwest Montana, but

"recent field work has added to their number and elucidated

their role during Cordilleran thrusting. Ruppel and others (1981)
show five major faults or fault zones, all anchored in the craton
but reaching westward into the thrust belt. The northernmost
one is a rejuvenation of the Proterozoic Willow Creek fauit zone
(Schmidt and Hendrix, 1981). The Horse Prairie fault zone was
studied by Scholten (1981). The two fauits are labeled WC and
HPin Figure 1. -

Minor late Tertiary to Recent activity along the Horse Prairie
fault zone (Figs. 3-5) can be seen in offsets of Tertiary beds, in-
trusion, mineralization and offsets of Tertiary volcanic plugs,
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Figure 5.
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Field expression of the Horse Prairie fault zone. (A) Fault breccia of foliated Precambrian Y quartzite in hill 7 miles west of Grant
(c.1. Fig. 3). (B) View looking east from the same hill (foreground). Front middle ground: right center, mineralized Tertiary lava flow;
left, Tertiary sediments fauited against lava flow. Rear middie ground: right center, offset diabase plug. Spurs in distance termi-
nate against fauit zone (low wooded Armstead Hills on left, bare northern terminus of Tendoy Range on right).
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decapitated drainages, changes in behavior of Horse Prairie
Creek, termination of major topographic spurs, alignments of
springs, tilted pediments, filled pediment channels, zones of
brecciation, and slickensided east-west striking rock surfaces.
Westward, the fault zone reaches into the Beaverhead Range
(P. Hansen, in progress) and toward the prominent Lemhi Pass
by which Lewis and Clark crossed the Continental Divide. It
may be that the peculiar Z-pattem of the range crest in this
area (Fig. 3) is attributable to the fault zone. Eastward, Ruppel
and others (1981) suggest its continuation at the abrupt south-
ern terminus of the Blacktail Range. Like the Willow Creek zone,
the Horse Prairie fault zone shows evidence of pre-orogenic
activity. A north-south stratigraphic section (Fig. 6) reveals pre-
Cretaceous erosion of the entire Jurassic and much of the Tri-
assic, followed by deposition of a coarse conglomerate facies
of the Kootenai Formation (c.f. Moritz, 1951). Thick, lower Pal-
2020i¢ quartzites south of the fault zone (M'Gonigle, 1965; Du-
Bois, 1981b) are represented on the north side by a feather
edge of the Cambrian Flathead Sandstone. Proterozoic sedi-
ments exposed on Bachelor Mountain on the north side (Figs.
3 and 4) show great affinity with the Belt (Mt. Shields?) sand-
stones, whereas those to the south belong to a unit here desig-
nated the Salmon Supergroup, and specifically to the Lemni
Group, which Ruppel (1975), and Evans (1981; Evans and Lund,
1981) show to be coeval with the Beit. Juxtaposition of these
contrasting stratigraphies has been achieved in part by differ-
ential transport aiong thrusts, but the stratigraphic contrast is
most obvious where differential motion seems to have been
minor, i.e. between the frontal Tendoy thrust block and its north-
erly counterpart (Fig. 4), indicating the reality of initial facies
changes and pre-thrust activity-along the fault zone.

Most significant in the context of this paper is the evidence
for a synorogenic role of the fault zone. As shown in Figures 3
and 4, thrust patterns are different north and south of the fault
zone. Major thrusts, including basement thrusts, terminate against
it. Within the zone, a fortuitous exposure of Proterozoic rock
west of Grant (Fig. 3) provides further insight. The quartzite
here occurs as a prominent fault breccia (Fig. §), indicating
fault movement under shallow overburden. Individual clasts show

the quartzite is foliated, in marked contrast to its occurrence

elsewhere in southwest Montana, showing deep-seated and there-
fore earlier synorogenic activity along the fault zone. The com-
bination of localized foliation within, and contrasting thrust de-
velopment on either side of the fault zone suggests that the an-
cient line of weakness in the crust and overlying sediments as-
sumed the role of a major tear thrust during Cordilleran oro-
genesis, comparable to the role ascribed to the Willow Creek
fauit zone by Schmidt and hendrix (1981). The significance of
this may be appreciated in the light of a fresh inquiry into the
cause or causes of the Cordilleran foreland thrust beit.

. DYNAMICS OF THRUSTING

Models of thin-skinned gravity gliding have been offered for
the westemn cordillera by Scholten (1968, 1973), Crosby (1968),
Chase and Talbot (1973), Roberts and Crittenden (1973), Hose
and Danes (1973), and Hyndman (1980). The energy to create
the tectonic slope required for gliding uitimately derives from
the mantle and crystaliine crust. It is imparted in the form of
gravitational energy to the sedimentary cover, where it is
converted to kinetic energy manifest in the folding and
thrusting of the sediments. Thus, in such a model the force
directly responsible for thrusting resides in the sedimentary
cover alone and affects this cover alone. in view of the data
presented above on basement involvement in thrusting, | now
consider this an untenable hypothesis for the direct cause of

the Cordilleran thrust belt as a ‘whole, even as { continue to
recognize gravity gliding on a more restricted scale for certain
allochthons clearly confined to the sedimentary cover and
demonstrably located at the foot of syntectonic slopes. (Kirk-
ham's (1927) originai “Medicine Lodge thrust” in the southemn
Tendoy Range, shown in Figure 3 with open teeth marks, is one
such allochthon (Schoiten, 1973). By the same token, one may
accept, for certain situations, the gravity spreading mode! of
Price and Mountjoy (1970; Price 1973) while recognizing that it
is difficult to apply-this model where thrusts are rooted in the
basement far from the topographically high mobile core that
must supply the gravitational potential for lateral transiation.

Recognition of basement rooting and of a secondary role of
gravity tectonics goes hand in hand with reaffirmation of the
view that lateral forces transmitted through the crust were
directly, rather than indirectly, responsible for the overthrust
belt. This leaves two models: eastward continental overthrust-
ing and westward continental underthrusting.

The distinction between the overthrust and underthrust
mechanisms was long ago recognized by alpine geologists. An
exhaustive review of the alpine nappe system led Kraus (1951,
p. 421) to summarize his conclusion in the phrase (as
translated by me): “For time and again the evidence indicated
that it is the downward forces that build mountain structures
— in space as well as time the reigning process is downward
construction.”* Likewise, Misch (1960) recognized that the dis-
tinction is not trivial, but invoives the problem of transmitting
laterai forces t eak_mobile core of a developing
orogen in the overthrust model as compared to their transmis-

sion through a rigid cold coniingnt in the underthrust modei

ig. 7). This led him to advocate eastward underthrusting of
the foreland beneath the mobile core. His argument seems as
sound today as then.

Three additional considerations argue in favor of the under-
thrust model. For one, it has been shown by L Cathles (Chevron
Oil Field Research Co., La Habre, CA: pers. commun., 1982) that
maximally thick, cold cratonic lithosphere, composed of ap-
proximately 25-30 km of old, relatively heavy crust and 95-100 km
of upper mantle, has sufficient average density to induce it to
sink into the asthenosphere (Cathles, ms in prep). In prep.). In
a westward moving plate this downward body force sets up a
tendency for the piate to subduct westward beneath the thinner
lithosphere at the outer part of the continent. To the extent
that this body force is a significant factor, it reduces the mag-
nitude of the compressive stress that needs to be transmitted
through the North American plate in the underthrust modei.
Such underthrusting of old cratons occurs as naturaily as sub-
duction of oceanic lithosphere. Cathles’ model eliminates the
oft-heard objection that continental subduction is quickly seif-
limiting owing to the presumed buoyancy of the subducted con-
tinental crust and the resulting uplift. Instead, the crust, though
lighter than the mantle, is dragged ‘down into it because it is
part of a sinking old, thick, and dense lithospheric plate. The
Cathles model suggests an answer to the question of what
caused thrusting to stop. Could it be that this occurred because
the thickness of continental crust to be subducted kept increas-
ing as more interior portions of the craton arrived at the thrust
beit, until the proportion of crustal materiai in the lithosphere
finally became too great, and the average density of the litho-
sphere too small, to permit the plate to sink and subduct?

* The awkward term “downward construction” renders the German “Abhau”
- an untransiatable word.
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core of orogen (weak coil). Only modei 3 is both mechanically plausible and successful in producing foreland thrusts.

A second reason for favoring the underthrust rather than the
overthrust model relates to the evidence, provided by the
synorogenic conglomerates, for synorogenic uplift in the
rear of the thrust beit. In the region of the present Idaho
batholith, rocks initially 10 to 12 km deep were placed at least 5
km above sea level and subjected to erosion (Scholten, 1973;
Ryder and Schoiten, 1973). Creating a “high” of such
magnitude, which is both tectonic and topographic, con-
ceivably could have been achieved by eastward lateral tran-

slation and piling up of overthrust sheets onto the continent.
However, overthrusting must then have proceeded at an ex-
ceedingly rapid rate to overcome the simuitaneous effects of
isostatic subsidence (which counteracts the raising of deep
rocks along low-angle thrusts) and erosion {(which counteracts
the raising of the topographic surface). in all probability, great
tectonic and topographic elevation can be attained only by ver-
tical rise of the crust. that is, by isostatic uplift. {sostatic uplift
implies that too much continental crust exists at depth. which,
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in a model of plate motions, can only be produced by continen-
tat subduction.

The question naturaily arises how the same crust that was
subducted by gravity can cause uplift once it has been subduc-
ted. Cathles (pers. comm., 1982) suggests that the upper,
lithospheric laminae represented by the crust, once they are
heated up, are likely to disengage from the heavy remainder of
the lithosphere, which continues to sink. Heating of the sub-
ducted slab -occurs at depth in the core of the developing
-orogen, rendered hot and mobile upon eastward subduction
and partial melting of oceanic lithosphere. In the northwestern
Corillera of the United States this was initiated at least as far
back as Permo-Triassic time (Onasch, 1977; Scholten and
Onasch, 1977). Once released, the light crustal material-begins
to exert an upward gravitative pressure on the overlying
lithosphere, and rapid isostatic rise ensues (Fig. 8). Continued
subduction places new continental lithosphere beneath
already subducted and upilifted crust, and the process of un-
derplating and uplift is repeated. Because it takes time for suf-
ficient heating to occur, the crust succeeds in “sneaking”
downward and laterally to some distance behind the thrust
beit before it decouples from the mantie. Thus, the Cathles
model explains why great uplift occurs in the rear of the foid
and thrust belt. The opposing sense of thrust motion on the
two sides of the core implicit in the dual subduction model of
Figure 8 is in good accordance with known field relations and
with Burchfiel and Davis’ (1968b) notion of the “two-sided
orogen’”;

A third reason for preferring the underthrust model relates to
the transverse fault zones in southwestern Montana. As
discussed above, at least two of these are ancient fractures
used as tear thrusts during Cordilleran tectonogenesis. Because
the fault zones are anchored in the craton, it seems more
plausible to consider that the thrust sheets inherited them from
the craton in the course of continental subduction than that they
were imparted to the craton from a set of overriding thrust
sheets.

On the basis of the distribution of seismic, volcanic, and tec-
tonic activity and of topographic pattems, Suppe, Powell and
Berry (1975) propose the existence since late Cenozoic time of a

pper mantle creates great buoyant uplift of underridden lithosphere
hiand leads to gravitative adjustments, adding to lateral transiation.

Westemn U.S. plate between the North American plate on the
east and the Gorda and Pacific plates on the west. The eastemn
boundary of the Western U.S. plate is portrayed as a zone of ex-
tension repeatedly transformed toward the west. Furthermore,
they suggest that a beit of seismicity may extend westward
from Yellowstone Park as far as central Idaho, possibly defining
one of several transforms that segment the plate into subplates.
| note that the eastem boundary of their Western U.S. plate
coincides closely with the earlier Cordilleran thrust front, and
that the east-west beit of seismicity would encompass the Hor-
se Prairie fauit zone and the Centennial fault zone south of it. In
view of this, | suggest that the Westem U.S. plate of Suppe,
Powell and Bemy, once part of the North American plate,
became a separate entity when the North American plate began
to subduct beneath its westem edge along a set of lithospheric
underthrusts, in the process imparting preexisting east-west
fractures onto the new Western U.S. Plate.

CONTINENTAL SUBDUCTION IN MONTANA

Figures 9 through 11 illustrate a model for the development of
a paried thrust belt in southwest Montana by continental sub-
duction. Underthrusting of the crust begins in the flank of the
geocline (Schoiten, 1956, 1957), probably, as suggested by Bur-
chfiei and Davis (1975), at the locus of greatest ductility contrast
between cold, rigid lithosphere of the craton and the more
mobile lithosphere at its westem fringe.

On a continental scale the geocline is composed of a nor-
them and a southem segment, and the arcuate intersections of
these two geoclinal segments with the sphere of the Earth
predetermines the ewolution of the thrust belt in the form of a
northern and a southem arc (Fig. 2), meeting at a set of transver-
se east-west faults (Fig. 1). Crustal subduction causes a
scraping off of the sedimentary cover along a decollement at the
top of the basement, and eastward migration of upward cutting
thrusts. The development of decollement displacements over
wide areas may be aided by gravitational spreading away from
the high central core of the orogen. Such a combination of
processes has been proposed for the Canadian Rockies by Price
(1981). Eventually, additional basement underthrusts develop
farther east, in particular at (but not necessarily confined to) the
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locus of the geoctinal hinge. Immediately east of the subduction
front the crust will have a tendency to be bowed up, giving rise to
the early uplifts that created locally derived facies of
synorogenic conglomerates (Ryder and Scholten, 1973). Finally,
continental underthrusting in southwest Montana jumps to a
second hinge with a NNE trend, developed during the Paleozoic
(Scholten, 1956, 1957). Depending on how far away this new set
of thrusts is rooted in the crystalline crust, it may expose
basement at the present thrust trace or stay above basement for
some distance back of the thrust trace. South of the intersection
between the northern and southern thrust arcs, the eastern bi-
furcation of the northern arc goes into the subsurface beneath
already subducted continental lithosphera. Consequently, there
is no expression of the NNE trend south of this intersection.

A byproduct of continental subduction is developed some
time after subduction begins, continuing as it proceeds. Great
and rapid isostatic uplift is initiated and maintained by the em-
placement of new lithospheric slices below earlier ones,
ultimately giving rise to prominent tectonic and topographic
highlands in the rear of the thrust zone, and to floods of syntec-
tonic conglomerates.

Finally, the question may be raised whether there is perhaps a
genetic relation between continental subduction and the in-
trusion of the idaho batholith. Its peculiar position much farther
inside the continent than the other great batholiths of the
American West has been noted by many, and Eardley (1951) ob-
served that it is located directly west of the intersection between
the two great Cordilleran arcs (Fig. 2). The petrologic-
geochemical signature of the Eocene phase of the idaho
batholith suggests a partial derivation from continental crust
(Rehm and Lund, 1981). The question ¢an be sharpened: Is it
- plausible that burial of mutally subducting lithospheric slices in-
to the mantle in the region of the hot mobile core could have
permitted heating of the continental crust sufficient not just to
cause its decoupling from the mantle, but in addition a partial
melting of that crust, followed by batholitic intrusion into the
underridden plate (Fig. 8)? It should be easier to initiate partial
melting in continental crust subducted into the mantie than in
continental crust that has not been subducted.

IMPLICATIONS FOR OIL AND GAS EXPLORATION

With regard to oil and gas occurrence, the most important
aspect of the model presented in this paper is that it encourages
a critical review of the possibility that certain Cordilleran
foreland thrusts may be rooted in the crystailine crust, so that
sedimentary units may lie structurally below basement.

In southwest Montana the major thrusts are believed to be
basement rooted both along the NNW to N-trending bifurcation
of the thrust belt and along the NNE-trending one. Granite
gneiss exposed in the thrust belt is underlain by sedimentary
rocks, and the same may be true for basement occurrences en-
countered or seismically interpreted at depth. A case in point is
the Cabin basement thrust system in the Tendoy Range, the
sole fault of Ruppel’s (1978) Medicine Lodge allochthon (Figs. 3
and 4), which almost has to occur as well beneath the Bea-
verhead Range to the west. The basin behind the Cabin thrust
trace and between the Tendoy and Beaverhead ranges (Medi-
cine Lodge-Nicholia basin) therefore seems to offer attractive ex-
ploration prospects, for the Precambrian Y sediments or Pre-
cambrian X gneisses which here lie directly below the Tertiary,
themselves should rest on Paleozoic sediments. The Kenneth

Luff Inc. No. 1 Hansen well in North Medicine Lodge basin (Fig.

3) has confirmed what was strongly indicated by field work. The
reinterpretation of the frontal fault in the NNW-trending thrust
zone, the Tendoy thrust, as a low-angle thrust rather than a high-

angle upthrust implies that the terrain directly west of its trace
also constitutes a favorable prospect.

In assessing the temperature regime to which potential sour-
ce rocks have been subjected, it is not adequate to base con-
clusions on analyses of induration indices, such as the
conodont alteration or carbon preference index, obtained from
samples collected at the surface. Qil and gas potential must be
assessed by estimating indices in rocks below the thrust sheets,
whichh may be lower than those in the thrust sheets. Thus, the
Paleozoic sediments below the Cabin thrust system west of the
Tendoy Range belong to the Tendoy allochthon and shouid have
indices intermediate between surface samples collected in the
Tendoy Range and those collected in the Beaverhead Range. -

Finally, interpretations of seismic data aimed at understan-
ding subsurface structural patterns conducive to oil or gas accu-
mulation in southwest Montana should take into account the
east-west faults. Thrust pattems on the two sides have
developed independently and cannot be comelated, and the
paleotectonic activity along the fauits has influenced sedimen-
tation, so that significant facies changes may be expected
across the faults.

SUMMARY

Theoretical as well as field evidence suggests that the fun-
damental cause of Cordilleran and, by analogy, probably all
back-arc thrusting is subduction of old continental lithosphere
beneath its own margin. in an ultimate sense the impetus for
subduction is gravitational, combined with lateral drift. Arcuate
out-lines of thrust beits reflect the intersection of the geocline
with the sphere of the Earth. Where arcuate segments meset,
subperpendicular fault zones may develop, which may later
function as tear thrust along which continental subplates move
side by side into the subduction zone. Underthrusting migrates
eastward partly through the crystalline crust and in part along
supracrustal decollement surfaces.

Underthrust crustal segments are heated in the hot mobile
core of the developing orogen, where, disengaged from the up-
per mantle, they produce rapid isostatic uplift. Partial melting of
subducted continental crust may perhaps contribute to
batholithic intrusion. As a large topographic gravity potential
develops behind the thrust arc, a process of gravitational
spreading of the sedimentary cover is superposed on the sub-
duction process. At a smaller scale, and more superficial level,
local high uplifts cause downward gravity gliding or sediments.
At all scales and levels the tectonic process is in the final
analysis a lithospheric response to a gravitative disequilibrium
and an attempt to re-establish equilibrium. It is sobering to read
how much of this scenario was anticipated three quarters of a
century ago by Bailey Willis (1907, p. 123-133).

Implications for petroleum occurrence reside in the probable
existence of sedimentary rocks below thrusts of crystalline
rocks. Also, significant changes in facies and structural patterns
may be expected along the oid east-west fault zones.
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