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Age and Tectonics of Plutonic Belts in Accreted
Terranes of the Klamath Mountains, California
and Oregon

William P. Irwin
U.S. Geological Survey
Menlo Park, California

‘Klamath Mountains province is a composite of several allochthonous terranes that are tectonic slices of
oceanic crust and island arcs ranging from early Paleozoic to Jurassic in age. The primitive nucleus of the
province was the lower Paleozoic rocks of the Eastern Klamath terrane, to which the Central Metamorphic
terrane was added as a thick underplating during a Devonian subduction event. Other terranes were added
sequentially to the enlarged nucleus during Jurassic time.

Granitoid plutonic rocks occur in all the terranes and are subdivided into belts that generally follow the
trends of the terranes. The plutonic belts range from Ordovician to Early Cretaceous in age. The plutons of
some belts were emplaced before their host terrane became attached to an adjacent terrane. These
preamalgamation plutons occur either as parts of ophiolite suites or as parts of comagmatic volcanic-plutonic
pairs that formed in island arcs. In contrast, the postamalgamation plutons are significantly younger than
their host rocks and are assigned to belts mainly on the basis of their isotopic ages. Some are known to be
postamalgamation because they are seen to cross-cut terrane boundaries or because of other regional tectonic
considerations. Some plutonic belts are superimposed on older plutonic belts. All the plutonic belts probably
intruded before the assembled Klamath terrane (composite) accreted to the North American continent, with
the possible exception of the Shasta Bally belt (Early Cretaceous), which may be postaccretion.

Paleontologic evidence suggests that some of the terranes may have originated at great distances from
North America. However, paleomagnetic studies on both stratified and plutonic rocks give-no clear evidence
of significant latitudinal displacement of the terranes, but they do indicate that some terranes have rotated
clockwise through large angles relative to stable North America. The data suggest that major rotation began
during Late Triassic or Early Jurassic time and that virtually all rotation of the Klamath terrane had ceased
by Early Cretaceous time. Nearly all the rotation occurred while the terranes were parts of oceanic plates.

INTRODUCTION province. It was a long-standing volcanic arc, built on
oceanic crust and upper mantle now represented by the

The Klamath Mountains province is part of the Trinity ophiolite, and shows evidence of intermittent
mosaic of accreted terranes that make up the western volcanism that ranged from early Paleozoic into Jurassic
margin of North America from Mexico to Alaska. The time (Irwin, 1981). The Central Metamorphic terrane,
province is an arcuate west-facing structure that consists of consisting of the Salmon Hornblende Schist and Abrams
several individual terranes (Fig. 1), each of which is Mica Schist, developed along the western edge of the
characterized by its own peculiar combination of lithology, Eastern Klamath terrane during eastward subduction
stratigraphy, age, plutonic rocks, and mineral deposits; it beneath the Trinity ophiolite in Devonian time. No
was in the southern part of the province that the term addition of other terranes to the enlarged nucleus seems to
“terrane” was first defined and used in its currently have occurred between Devonian and Jurassic time, even
accepted tectonic context (Irwin, 1972). All the terranes though volcanic strata of the Eastern Klamath terrane
that constitute the Klamath Mountains are of oceanic rocks; suggest that subduction events took place during late
none is continental, except for a few small patches of Paleozoic and early Mesozoic time. The North Fork,
superjacent strata. Some of the terranes are ophiolitic, Hayfork, Rattlesnake Creek, and Western Jurassic terranes,
_consisting partly of oceanic crust and upper mantle; their which sequentially make up the western part of the
ophiolitic components are thought to have formed at province, were swept against the Paleozoic nucleus during
oceanic spreading centers during Ordovician, Permian, Jurassic time. The Klamath terrane (composite), which
Triassic, and Jurassic time. Most terranes include parts of consists of all the terranes that make up the Klamath
volcanic island arcs that formed at various times during the Mountains province, probably accreted to the North
Paleozoic and Mesozoic. Some terranes are structurally American continent during latest Jurassic or earliest
coherent rocks; others are melange. Cretaceous time.

The Eastern Klamath terrane is the nucleus of the
187
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DISTRIBUTION OF PLUTONS

Granitoid plutons intrude all the various
allochthonous terranes of the Klamath Mountains province
(Fig. 1). They are similar in size to most other plutons
scattered along the so-called Nevadan orogenic belt that
trends northward through the Sierra Nevada, the Klamath
Mountains, and into the Ochoco-Blue Mountains region of
eastern Oregon, but they are dwarfed by the giant
composite Sierra Nevada batholith. Isotopic ages have been
measured on many of the plutons of the Klamath
Mountains, and these indicate that the plutons are arranged
in numerous belts.

The general distribution of plutons in the Klamath
Mountains province was well established by 1960 (Wells
and Peck, 1961; Irwin, 1960), but the ages of only a few
plutons were known. The earliest K-Ar isotopic dating of
the plutons was of the Shasta Bally batholith at the south
end of the province by Curtis et al (1958), and for many
years this was widely cited in regard to the age of the
Nevadan orogeny and to the boundary between Jurassic
and Cretaceous time. By 1971 the ages of most of the major
plutons of the Klamath Mountains had been determined by
the K-Ar isotopic method (Davis, 1961; Romey, 1962;
Holdaway, 1963; Lanphere et al, 1968; Hotz, 1971). Since
1971 a few other plutons have been dated by the K-Ar
method, but most of the recent geochronologic study of the
plutons has been through use of the U/Pb method by
Mattinson, Saleeby, and Wright (see Table 1). A beltlike
pattern of distribution of some of the plutons was :
recognized by Lanphere et al (1968) on the basis of their
K-Ar isotopic dating. This early delineation of plutonic
belts, however, has been greatly modified because of
additional isotopic age data and an increased understanding
of the tectonic development of the Klamath Mountains
province.

The distribution of the plutons in the Klamath
Mountains is not uniform (Fig. 1). Plutons are most
abundant in the Western Paleozoic and Triassic terrane
(composite). They are remarkably sparse in the Yreka-
Callahan area and much of the area of the Redding section
of the Eastern Klamath terrane (Irwin, 1981), especially
when the abundance of plutons that intrude the underlying
Trinity ophiolite is considered. They are also sparse in the
Western Jurassic terrane, including the window of the
Condrey Mountain Schist and in the North Fork terrane.
Some plutons are strikingly linear, an extreme example
being the Ironside Mountain batholith with a length-to-
width ratio of approximately 13 to 1; ratiosof 2 or 3 to 1
are common. The long axes of the linear plutons tend to be
parallel to the regional lithic trends and terrane boundaries.
Many of the plutons are entirely within a single terrane,
and some of these are truncated by fault boundaries of the
terranes. Plutons that are truncated by fault boundaries and
plutons that intrude fault boundaries provide important
constraints on the ages of the suturing of terranes. Plutons
that are not near terrane boundaries at the surface may
intrude a structurally lower terrane at depth, but some of
these plutons are older than the terrane boundaries and

may- be truncated by a boundary fault at depth.

The postulated plutonic belts generally follow the
trend of the terranes of the province but most are not
clearly continuous throughout the length of a given terrane
(Fig. 2). The trend of the belts in the northeast part of the
Klamath Mountains province is northeast-southwest,
virtually at right angles to the northwest-southeast trend in
the southwest part of the province. This change in trend is
accompanied by other changes in the plutonic belts as well
as by major changes in other regional geologic features.
These changes occur across a vaguely defined northwest-
trending zone that is herein called the Salmon tectonic line
because of this parallelism in trend to much of the Salmon
River. The Salmon tectonic line divides the Klamath
Mountains province into a northeast domain and a
southwest domain (Fig. 2). The number of plutonic belts in
the northeast domain is nearly double that in the much
narrower southwest domain.

AGE OF PLUTONIC BELTS

The plutonic belts range in age from Ordovician to
Early Cretaceous. The Paleozoic belts (Alpine gabbro,
Skookum Guich, Mule Mountain, and McCloud belts) are
all in the Eastern Klamath terrane, the early nucleus of the
province. To the west, the belts are Jurassic and Cretaceous
in age and, with some exceptions, are successively younger
oceanward. However, the youngest plutonic belt (Shasta
Bally) is mainly in the Eastern Klamath terrane and in map
pattern (Fig. 2) is partly superimposed on the oldest
plutonic belt (Alpine gabbro belt).

The isotopic ages assigned to the plutons are from a
combination of K-Ar and U/Pb analyses from various
published sources (see Table 1). In some instances a
disparity in isotopic age, or a wide range in isotopic ages for
a single pluton, results in an equivocal assignment to a
specific belt. Many plutons, particularly the smaller ones,
are not yet isotopically dated. Because of these
shortcomings, the present data are insufficient to define
precisely the limits of some of the belts, and therefore the
subdivisions must be considered to be provisional. This
provisional aspect is most apparent in the Western
Paleozoic and Triassic terrane of the northeast domain.
There the plutons generally are progressively younger
toward the northwest as indicated by the provisional
delineation of the Wooley Creek, Greyback, and Grants
Pass belts, but it is not clear whether they intruded in a
series of successive restricted zones or in a broadly
overlapping process. For example, the Grants Pass belt
(~140 m.y.) may extend farther southwest to include the
Lower Coon Mountain pluton (142 m.y.); and the Cracker
Meadow Pluton (136 m.y.), which intrudes the Bear
Mountain igneous complex (Snoke et al, 1981) of the
Greyback belt, may represent an overlap by the Grants
Pass belt. The Gold Hill and Jacksonville plutons, which
are seemingly intermediate in age to the plutons of the
Grants Pass and Greyback belts, may represent either a
northeast extension of the Greyback belt or an overlap by
the Grants Pass belt.
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EXPLANATION
O

PLUTONIC BELTS

POSTAMALGAMATION

PREAMALGAMATION

LIST OF DATED PLUTONS

A Asntand
AR Ammon Ridge
BG Basin Gulch
BM Bear Mountain
BW Bear Wallow
C Caripou Mountain
CC Castle Crags
CM  Cracker Meaadow
CP Craggy Peak
DP Deadman Peak
EF East Fork
EP Englisn Peak
FS Forks of Salmon
G Greyback
GC Glen Creex
GH Gold Hill
GP Grants Pass
HL Horsesnoe Lase
IM Ironside Mountain
J Jacksonville
LC Lower Coon Mountain
MM Mule Mountain
NG Unnameg yaocrd
PR Pit River
RP Russian Peak
S Slinkard
SB Shasta Bally
SG Saadle Gulcn
SM Star Mountain
SP  Sugar Pine
YB Vesa Bluff
WC Wooley Creex
WP Walker Point
WR White Rock
YB Yellow Butte

OCEAN

PACIFIC

NORTHEAST

Figure 2—Map of Klamath Mountains province showing outlines of major plutons and the trends of the plutonic belts. Ultramafic
ophiolitic rocks are not shown. Letter symbols on map correspond to names in list of dated plutons. The time scale of Harland et al
(1982) was used for correlating the isotopic ages with geologic time.
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Other plutons that are isotopically dated but not
assigned to specific belts include the Russian Peak, East
Fork, and Yellow Butte plutons. Neither the Russian Peak
nor the East Fork plutons seem to belong to nearby belts,
but both plutons are important because they place
constraints on the time of suturing of their host terranes.
The Russian Peak pluton (144 to 147 m.y.) cross-cuts the
sutures between the Central Metamorphic and the Western
Paleozoic and Triassic terranes. The East Fork pluton (149
to 164 m.y.) cuts the suture between the Central
Metamorphic and North Fork terranes. The Yellow Butte
pluton (138 m.y.), which is exposed through a window in
Tertiary volcanic rocks of the Cascade Range about 19 km
(12 mi) northeast of the Klamath Mountains province, may
represent an extension of the Shasta Bally belt.

The Skookum Gulch belt is unusual and may not be a
true plutonic belt. It consists of several bodies of silicic
plutonic rocks in a matrix of Paleozoic schist and phyllite.
The contact relations are not clear, but the plutonic rocks
are thought possibly to be large tectonic blocks in a
melange rather than local intrusions (Hotz, 1977). The
plutonic rocks are tentatively considered early Paleozoic in
age because of their similarity to cobbles of isotopically
dated trondhjemite (455 m.y.; Mattinson and Hopson,
1972) that occur in a lower Paleozoic conglomerate at
nearby Lovers Leap (Potter et al, 1977; Hotz, 1977;
Lindsley-Griffin, 1977). The cobbles as well as the plutonic
bodies in the Skookum Gulch melange may well have come
from the Trinity ophiolite.

PREAMALGAMATION AND
POSTAMALGAMATION PLUTONS

As a corollary to the general concepts of plate tectonics
and the accretion process, the plutons are categorized as
preamalgamation or postamalgamation on the basis of
whether they intruded before or after their host terrane was

“joined to an adjacent terrane.' The preamalgamation
plutons intrude only a single terrane. The postamalgamation
plutons in some instances may intrude a single terrane but
in other instances may intrude two or more contiguous
terranes.

The preamalgamation plutons of the Klamath
Mountains occur in two principal genetic settings: (1) The
plutons are part of an ophiolite suite, as exemplified by the
early Paleozoic gabbroic plutons that intrude the Trinity
ultramafic sheet; and (2) the plutons are similar in age and
composition to volcanic strata they intrude, forming
comagmatic plutonic-volcanic pairs, and are thought to
represent the intrusive phases of volcanic island arcs. The
arc-related plutons include the Mule Mountain stock
(related to the Devonian Balaklala Rhyolite), plutons of the
McCloud belt (related to the Permian Dekkas Andesite),
and the Early or Middle Jurassic plutons of the Ironside

'In an carlier report (Irwin. 1984), the plutons were categorized as preaccretion and
postaccretion plutons. using the term accretion in a general sense. i.e., the joining of
onc terranc to another. rather than in the restricted sense of Jones et al (1983) that
implies the joining of a terrane to a continental margin. For conformity with the
terminology of this volume. the term accretion is used in the restricted sense, and the
term amalgamation is used to imply the joining of terranes in an oceanic setting.

Mountain belt (related to the Hayfork Bally Meta-
andesite). It should be noted that the plutons of the
McCloud belt are preamalgamation in the sense that they
are genetically related to intermediate-age (Permian)
volcanic strata of a long-standing volcanic arc, but they are
postamalgamation in relation to the Devonian suturing of
the Central Metamorphic terrane to the early part of the
Eastern Klamath terrane.

In contrast to the preamalgamation plutons, the
postamalgamation plutons are significantly younger than
their host rocks and seem to bear no genetic relation to
them. They are assigned to belts mainly on the basis of
their isotopic ages. These plutons are considered to form
postamalgamation belts at places where some of the plutons
cross-cut the suture between the host and an adjacent
terrane, or where the suture is known to be older than the
plutons on the basis of other regional considerations.
Postamalgamation plutons seem to be absent southwest of
the Shasta Bally belt in the southwest domain except for
the small East Fork pluton, whereas belts of post-
amalgamation plutons greatly predominate northwest of the
Shasta Bally belt in the northeast domain.

The Wooley Creek and Ironside Mountain pluton
belts are virtually coincident along trend, but the plutons of
the Wooley Creek belt are appreciably less mafic and more
quartzose than those of the Ironside Mountain belt. The
plutons of both belts intrude presumably correlative
volcanogenic strata of the Hayvfork terrane (Donato et al,
1981) even though the belts are in separate domains (Fig.
2). The Ironside Mountain batholith is clearly truncated by
terrane boundaries (Irwin, 1977). However, because the
Wooley Creek, Slinkard, and Vesa Bluffs plutons cross
terrane boundaries (Donato et al, 1982; Barnes, 1983;
Mortimer, 1984), the plutons of the Wooley Creek belt are
postamalgamation even though they appear on average to
be only a few million years vounger than the
preamalgamation plutons of the Ironside Mountain belt
(Fig. 3).

The plutons of the Klamath Mountains are grouped in
Figure 3 according to the terranes in which they occur and,
in most instances, according to the appropriate plutonic
belt. The ages of small plagiogranite pods in the Jurassic
Josephine ophiolite and the late Paleozoic North Fork
ophiolite also are shown. They define the ages of the
ophiolites and help to illustrate the time interval between
the formation of the ophiolitic base of the terrane and the
intrusion of the terrane by younger plutons. In the case of
the Josephine ophiolite, the interval is only a few million
years, and with the North Fork ophiolite the interval is
more than 100 m.y. The time interval between the
intrusion by the early Paleozoic plutons of the Alpine
gabbro belt and the intrusion by the plutons of the Shasta
Bally belt is approximately 300 m.y. This sequential
increase in the time intervals between emplacement of the
oldest and youngest plutonic rocks of the terranes follows
the generally sequential west-east increase in the ages of the
oldest rocks of the terranes.

DISPLACEMENT AND ROTATION OF TERRANES

The places of origin of most of the terranes are not
known; they could have formed just west of the continental
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Figure 3—Comparison of ages of plutons of the Klamath Mountains, grouped according to terranes. The time scale is from Harland et

al (1982).

margin, not far from their present location in relation to
North America, or at some remote location. Paleontologic
evidence suggests that some terranes may have traveled
great distances to their present sites. For example, pods of
Permian limestone in the Western Paleozoic and Triassic

- terrane northeast of Yreka (Elliott and Bostwick, 1973) and
in the Hayfork terrane in the southern part of the province
near Wildwood contain a foraminiferal fauna that is foreign
to the Western Hemisphere; the fauna closely resembles
Tethyan faunas from southern China, Japan, and
southeastern Siberia (Nestell et al, 1981). Early Paleozoic
shelly faunas in rocks of the Yreka-Callahan area of the
Eastern Klamath terrane are of Asiatic-Pacific and
European rather than western North American (Great
Basin) aspect (Boucot et al, 1973). Triassic ammonities
from a locality in the Rattlesnake Creek terrane are not
reported elsewhere in North America (Silberling and
Irwin, 1962).

Paleomagnetic studies have been made on only a few
of the terranes of the Klamath Mountains. These have
vielded no clear evidence of significant latitudinal
displacements and cannot detect longitudinal
displacements. However, the various studies do indicate
that the early geographic orientation of the Klamath
Mountains terranes differed greatly from their present
orientation relative to cratonal North America (Fig. 4). The
oldest rocks that have been studied are limestone of the
Devonian Kennett Formation at two areas in the Eastern
Klamath terrane. In one aréa the primary magnetism of the
Kennett was found to be obscured by a postfolding
remagnetism that was interpreted to indicate 70 = 10° of
clockwise rotation relative to stable North America
(Achache et al, 1982). Fagin and Gose (1983) measured

116° of clockwise rotation on the Kennett in the other area,
95° on the Mississippian Bragdon Formation, 91° on the
Permian McCloud Limestone, and 83° on the Triassic
Modin Formation, but these are not clearly measurements
of the primary magnetization. Other paleomagnetic studies
were on Permian and younger strata along two transects of
the Eastern Klamath terrane and on superjacent Cretaceous
strata of the Great Valley sequence, and these studies
indicate: (1) equal amounts of clockwise rotation of greater
than 100° relative to stable North America for the Permian
and Triassic rocks, (2) clockwise rotation of about 50° for
the Lower and Middle Jurassic rocks, (3) little or no
rotation of the Cretaceous superjacent rocks, and (4) no
significant latitudinal displacement of any of these rocks
(Mankinen and Irwin, 1982; Mankinen et al, 1982; Irwin et
al, 1984).

Measurements on five granitoid plutons in the
northern part of the Western Paleozoic and Triassic terrane
indicate clockwise rotations that range from 53 to 113°,
excepting the Ashland pluton that may show small
counterclockwise rotation (Schultz, 1983; Schultz and Levi,
1983). All of these plutons are Jurassic with the possible
exception of the Grants Pass pluton, which may be early
Early Cretaceous in age. Although measurements on
plutons are fundamentally difficult to compare with
measurements on stratified rocks because the plutons lack
an original horizontal reference datum, the rotations
indicated for the plutons are generally similar to those for
the Jurassic strata of the Eastern Klamath terrane.

Some paleomagnetists have postulated that the large
rotations assigned to the Klamath Mountains rocks
occurred since Early Cretaceous (Achache et al, 1982) or
during Cenozoic time (Fagin and Gose, 1983), and thev
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Figure 4—Paleomagnetic measurements of tectonic rotations of
Klamath Mountains terranes (slightly modified from Irwin et al,
1984). Azimuth of arrows, measured from north, indicates amount
of clockwise rotation of the measured rock unit relative to the
expected paleomagnetic direction for a stable North America,
except for the Ashland pluton, which may show small
counterclockwise rotation. Principal plutons of the province are
stippled. Letter symbols denote ages of paleomagnetically
sampled rocks units: D = Devonian; PTr = Permian and Triassic;
J = Jurassic, KJ = Jurassic or Early Cretaceous; K = Cretaceous;
and T = Oligocene. Numbers after letters refer to sources of data:
1, Mankinen and Irwin (1982); 2, Achache et al (1982); 3,

. Mankinen et al (1982); 4, Craig et al (1981); and 5, Schultz (1983).

suggest that the rotations were contemporaneous with those
of Tertiary volcanic rocks of the Oregon Coast Ranges to
the north. However, these ideas are incompatible with the
small (12°) rotations measured on Lower Cretaceous strata
of the Great Valley sequence at the south end of the
Klamath Mountains (Mankinen and Irwin, 1982) and on
the Tertiary volcanic rocks near the east edge of the
Klamath Mountains (Craig et al, 1981). These smail
rotations measured on the superjacent rocks indicate that
most of the rotation of the Klamath basement was pre-
Early Cretaceous (pre-Valanginian).

CONCLUSIONS
The relation between the time of rotation of a terrane

and the time of accretion to North America is important
because it indicates whether the rotation occurred while the

terrane was part of an oceanic plate or while part of the
North American continent. The results of the
paleomagnetic studies on both the plutonic and stratified
rocks are compatible with the concept that the Eastern
Klamath terrane began major rotation during latest Triassic
or earliest Jurassic time and that all elements of the
Klamath terrane (composite) had virtually stopped rotating
relative to stable North America by Early Cretaceous time.
The coincidence of this virtual cessation of rotation with
the inception of deposition of the Lower Cretaceous basal
strata of Great Valley sequence on Klamath basement is
good evidence for the time of completion of the accretion of
the Klamath terrane to the North American continent.
Nearly all the rotation of the terranes of the Klamath
Mountains probably occurred while the terranes were parts
of oceanic plates.

The Shasta Bally is the youngest of the plutonic belts,
and, although it is shown as postamalgamation on Figure 2,
it may possibly be postaccretion. The isotopic age of Shasta
Bally batholith (136 m.y.) is remarkably close to the Early
Cretaceous (Valanginian) age of the basal strata of the
Great Valley sequence that overlap the Klamath terrane.
The difference in age between the batholith and the basal
strata of the overlap sequence seems unlikely to be more
than a few million vears. Although paleomagnetic data are
not available for the plutons of the Shasta Bally belt, one
might speculate that the paleomagnetic orientation of the
plutons will be found to differ by no more than a few
degrees from that of the overlap sequence and thus may not
differ greatly from the orientation of stable North America.

The preamalgamation and postamalgamation pluton
belts were captive parts of the tectonically rotating terranes.
Paleomagnetic measurements on the plutons and stratified
rocks of the northeast domain suggest that the plutonic
belts as well as the other components of the terranes must
originally have been oriented much differently than now in
relation to stable North America; there presently are no
paleomagnetic data on the orientation of the plutons of the
southwest domain. Much additional data must be obtained
before the complex story of plutonism and accretion of the
Klamarh Mountains can accurately be told. However, in a
simple scenario based on the available data the primitive
nucleus of the Klamath Mountains province was part of a
volcanic island arc that faced southwest during early
Paleozoic time. The underplating of the Eastern Klamath
terrane by the hornblende and mica schists of the Central
Metamorphic terrane was caused by subduction of a
northeast-moving plate beneath the arc during Devonian
time. Deposition of a thick prism of flyschlike strata
(Bragdon Formation) followed during Mississippian time,
with volcanism (Baird Formation) becoming important
again in Late Mississippian to Early Permian time. The
McCloud Limestone represents a reef that formed along
the arc during Early Permian time and was partly
contemporaneous with the Permian Dekkas Andesite and
its comagmatic McCloud pluton belt. The arc continued to
face southwest until latest Triassic or earliest Jurassic time
and then rotated approximately 50° clockwise to face
westward during much of Early to Late Jurassic time.
Volcanism and deposition continued in the Eastern
Klamath terrane during Early and Middle Jurassic time.



Tectonostratigraphic Terranes, Pacific Northeast Quadrant 197

TFhe Western Paleozoic and Triassic and the Western
Jurassic terranes sequentially sutured to the western edge
of the developing west-facing Klamath terrane during the
Middle and Late Jurassic, accompanied by intrusion of
plutons. During latest Jurassic and possibly earliest
Cretaceous time the arc rotated an additional 50° clockwise
to nearly attain its present northwest-facing orientation by
the time it accreted to North America.

The number of plutonic belts in a province as small as
the Klamath Mountains is remarkably large and may seem
to be unique. However, a similar multiplicity of plutonic
belts probably will be found in other circum-Pacific
borderlands where a long history of accretionary tectonics
is preserved.
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