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Paleogeographic reconstructions for Oregon and Washington during Paleogene time illustrate a major transition from a
dominantly compressional (prior to middle Eocene time) to an extensional tectonic regime. This transition resulted in the
development of three phases of Paleogene basin evolution in the United States Pacific Northwest. During the initial phase,
basins formed along the continental margin during collision of oceanic islands. Sediments in these basins were derived from
nearby orogenic highlands. The second phase of basin development began in middle Eocene time and consisted of rapid sub-
sidence of individual basins that formed within a broad forearc region. Nonmarine basins that formed during this phase were
caused by extension possibly associated with transcurrent faulting. Rapid sedimentation in both marine and nonmarine basins
during this time consisted dominantly of sandstone derived from Cretaceous plutonic sources far to the east. The final stage of
basin development was the modification of previous basin configurations by the growth of the Cascade volcanic arc, which
was initiated in early Oligocene time. The rising Cascade Range diverted streams carrying eastern-derived material, thereby
reducing overall sedimentation rates in the coastal basins and providing a local source of volcanic detritus.

Dans les états de I’ Orégon et de Washington, les reconstitutions paléogéographiques durant le Paléogene illustrent une
période de transition majeure d’un régime de compression tectonique dominante (antérieur a 1’'Eocéne moyen) a un régime de
distension tectonique. Trois phases de 1’évolution du bassin paléogéne dans le nord-ouest Pacifigue des Etats-Unis sont dues a
cette transition. Au cours de la phase initiale, des bassins se formérent le long de la marge continentale lors de la collision des
iles océaniques. Les sédiments dans ces bassins provenaient des hautes terres des monts avoisinants. La seconde phase de
developpement du bassin débuta 2 I’'Eocene moyen, et elle correspond a une subsidence rapide des bassins individuels qui
s’étaient formés au coeur d’une grande région d’arc frontal. Les bassins continentaux qui se développerent durant cette phase
doivent leur origine 2 une extension qui accompagnait probablement un décrochement. La sédimentation rapide dans les
bassins marins et continentaux a cette époque était dominée par des gres dérivés des régions nourriciéres plutoniques crétacées
situées plus a I’est. L’étape final du développement des bassins fut la modification des configurations des bassins déja exitants
provoquée par la croissance de I'arc volcanique des Cascades, lequel arc est apparu au début de 1'Oligocéne. Le soulevement
de la chaine des Cascades a modifi€ la direction d’écoulement des cours d’eau qui transportaient des matériaux provenant de
I’est, de ce fait réduisant les taux de sédimentation moyens dans les bassins cotiers et fournissant une source locale de détritus

volcanique.
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Introduction

The past few years have brought renewed interest in the
Tertiary sedimentary basins of the United States Pacific
Northwest, both in terms of ongoing tectonic studies and,
more immediately, for purposes of hydrocarbon exploration
(Armentrout and Suek 1985). Despite the increased interest in
the region, few comprehensive geologic compilations exist.
The most recent synthesis of regional Tertiary tectonics was by
Ewing in 1980. Since that time numerous articles have been
published that have added to our knowledge of the Paleogene
history of the Pacific Northwest. The purpose of this article
is to summarize the paleogeographic history of Oregon and
Washington during Paleogene time. We briefly review the
igneous, sedimentary, and deformational histories of the area
and then summarize this information on a series of paleogeo-
graphic maps. We also provide an extensive reference list as a
starting point for future studies.

During Paleogene time the northwestern United States
and adjacent British Columbia underwent a transition from a
dominantly compressional to an extensional tectonic regime.
Amalgamation and accretion of terranes in the San Juan
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Islands, North Cascade Range, Blue Mountains, and Klamath
Mountains (Fig. 1) had culminated by middle to Late Creta-
ceous time (Davis et al. 1978; Hamilton 1978; Monger et al.
1982; Tabor et al., in press). Regional compressional defor-
mation, including both vestigial accretions in the coastal zone
and unrelated thrust faulting in the foreland, ceased by about
50 Ma (see below). At about the same time, extension began in
Oregon and Washington, and it was well underway throughout
the western United States during Oligocene time (see below).
The initiation of extension was characterized by the westward
migration of magmatism, the beginning of tectonic rotation of
crustal blocks, regional strike-slip faulting, and the formation
of metamorphic core complexes. These and other major geo-
logic events that occurred in the Pacific Northwest (Fig. 1)
between about 60 and 30 Ma are summarized in the following
sections.

Igneous activity

Volcanism in the Coast Ranges
The Paleogene stratigraphy of the Coast Ranges includes
both accreted volcanic rocks of probable seamount origin and
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FiG. 1. Simplified geologic map of Paleogene units in the Pacific Northwest. Data from Barksdale (1975), Gard ( 1968), Heller and Dickinson
1 Klamath (1985), Huntting et al. (1961), Hyndman (1980), Tabor and Cady (1978a), Tabor et al. (1968, 1980, 19824, 1982b), United States Geological

ate Creta- Survey (1964, 1966, 1969), Walker (1977), Wells (1979, 1981), Wells and Peck (1961), Wells et al. (1983), and J. C. Yount (written communi-
\ger e al., cation, 1984). B, Boise; E, Eugene; S, Seattle; Sp, Spokane; Y, Yakima.
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the North American plate, preclude a simple scenario and that
the hot-spot basalt eruptions were also related to the synchro-
nous reorganization of the Kula—Faralion ridge or that the
basalt was erupted in the wake of oblique continental rifting of
North America.

Post-accretion volcanic units include alkalic flows, mafic
sills, and dikes that erupted episodically from middle Eocene
into Oligocene time. The basalt, diabase, and gabbro are inter-
bedded with or injected into the sediments of the coastal
basins. For example, the upper part of the Crescent Formation
in southwestern Washington is interbedded with the arkosic
sandstone of Megler, and the younger Goble Volcanics to the
east are interbedded with sandstones of the Cowlitz Formation
(Wells 1979, 1981). In Oregon, the Yachats Basalt (Snavely
and Macleod 1974) and the Tillamook Volcanics (Wells ef al.
1983) consist primarily of subaerial flows overlying a base of
pillow basalts that apparently erupted in a forearc-basin set-
ting. The exact origin of these forearc volcanic rocks and sub-
sequent intrusive activity is uncertain. Snavely and MacLeod
(1974) and Snavely er al. (1980b) proposed that some of the
volcanic rocks had erupted along a zone of tensional rifting.
Wells ef al. (1984) related this manifestation of regional exten-
sion to the obliquity and (or) decrease in rate of convergence
between the Farallon and North American plates.

Arc magmatism

Several compilations of radiometric ages have documented
the rapid sweep of arc-related magmatism across the north-
western United States between 70 and 35 Ma (Armstrong
1974, 1978; Snyder er al. 1976; Ewing 1980). The arc rocks
include a wide variety of compositions from basalt to rhyolite
and associated plutonic rock types, all of which are predomi-
nantly calc-alkalic in composition but are increasingly alkalic
eastward towards the craton (Lipman ez al. 1972; Armstrong
1978). At about 70 Ma, magmatism was centered in the region
of the Idaho batholith, but it subsequently migrated eastward
across Montana and then swept back to Idaho by 50 Ma. A
northwest-trending belt of magmatic rocks formed during this
later time interval, the Challis Volcanics, (Armstrong 1974,
1978). Subsequently the locus of igneous activity migrated
westward into Oregon; volcanic rocks of the Clarno Formation
in central Oregon were first erupted about 45 Ma (Oles and
Enlows 1971; Enlows and Parker 1972; Armstrong 1978;
Taylor 1981; Fiebelkomn er al. 1983), and the Little Butte
Volcanics, the oldest dated rocks of the Cascade arc, erupted
in the Oregon Cascade Range by about 38 Ma (Sutter 1978;
Lux 1982). In northern Washington the westward shift of the
arc apparently began a little earlier and perhaps migrated more

quickly than in Oregon, with widespread magmatism oceyr
ring from the Okanogan region to the North Cascades at abou.
50 Ma (Fig. 2b) (Fox et al. 1977; Frizzell and Vance 1983.
Tabor et al. 1984; Armstrong 1978). Arc magmatism hag been
restricted to the Cascade Range of Washington and Oregon for
at least the past 35 Ma. Determining the rate and magnitude of 4
arc migration in the Pacific Northwest is difficult because of 1
the contemporaneous and subsequent extensional and rota-
tional history of terranes throughout the region (Hamiltop
1969; Armstrong 1974; Simpson and Cox 1977). These ter-
rane movements have affected the distribution of volcanje
rocks and, to some extent, increased the apparent rate and
magnitude of Eocene arc migration. The apparently wider
sweep of magmatism in Oregon than in Washington may be
due mostly to a greater amount of subsequent extensiong)
movement in Oregon.

Sedimentary basin evolution

Major sedimentary basins that developed during Paleogene
time were concentrated along the coastal zone (Armentroy
et al. 1983) (Fig. 3). Relatively few sedimentary deposits
older than Eocene age are preserved in the Pacific Northweg;.
Paleodispersal patterns in the Eocene basins indicate flow was
dominantly from the east and south (Fig. 3). When corrected
for tectonic rotations (Beck 1980), most basins in westem
Oregon and southwest Washington show original dispersa]
from the east or southeast.

Paleogene sandstones throughout the region can be cop.
veniently characterized by three petrofacies (e.g., Heller and
Ryberg 1983). (1) Lithic sandstones are restricted to the north.
em Olympic Peninsula (Fig. 2a) (Aldwell and Lyre forma-
tions, Twin River Group, the sandstones of Scow Bay) and the
lower part of the stratigraphic section in the southern Oregon
Coast Range (Fig. 2a) (Roseburg, Lookingglass, and Floumoy
formations). These sandstones contain a mixture of volcanic,
metamorphic, and sedimentary lithic fragments that were
derived from local orogenic uplands (e.g., Klamath Mountains
and Vancouver Island). (2) Arkosic sandstones dominate most
sections between 50 and 40 Ma, including the Tyee and Yam-
hill formations in Oregon and the sandstone at Megler, Puget
Group, and the Chuckanut and Swauk formations in Washing-
ton. In contrast to the lithic sandstone, the arkose contains con-
spicuous white mica, potassium feldspar, and quartz grains,
and volcanic fragments dominate the lithic components (Heller
and Ryberg 1983; Chan 1985). In Oregon, source areas for
most of these deposits were probably the plutonic uplands far
to the east (Heller er al. 1985), such as the Idaho batho-

FI1G. 2. Time—space tectono-stratigraphic cross sections: (A) roughly north—south section through the Oregon and Washington coastal ranges
and (B) east— west section across northern Washington. Time scale from Palmer (1983). Data from Armentrout and Berta (1977); Armentrout
et al. (1983); Armstrong (1978, 1982); Baldwin (1974); Barksdale (1975); Beck and Burr (1979); Duncan (1982); Engels et al. (1976); Frizzell
and Vance (1983); Fulmer (1975); Gresens e al. (1981); Harms and Price (1983); Heller and Dickinson (1985); Johnson (1984a); McDougall
(1980, 1981); McLean (1977); Pearson and Obradovich (1977); Rau (1981); Snavely et al. (1980a); Tabor and Cady (1978a); Tabor et al.
(1984); Tumner et al. (1983); Vine (1969); Wells (1979, 1981); and Worsley and Crecelius (1972). Ad, Aldwell Formation; As, Alsea Forma-
tion; Ba, Bateman Formation; Bk, Blakeley Formation; BP, Barlow Pass Volcanics of Vance (1957); Bs, Bastendorff Formation; Ck, Chuckanut
Formation of Johnson (1984a); Cl, Coaledo Formation; Cr, Crescent Formation; Cs, Chumstick Formation; Cw, Cowlitz Formation in Oregon
and in Washington; Ek, Elkton siltstone member (of Tyee Formation); Fl, Flournoy Formation; GV, Goble Volcanics; KD, Kettle dome; Ke,
Keasey Formation; KM, Klondike Mountain Formation; LC, Lincoln Creek Formation; Lk, Lookingglass Formation; IM, McIntosh Formation
(lower part); Ly, Lyre Formation; MS, sandstone at Megler; Na, Naches Formation; Ns, Nestucca Formation; OC, O’Brien Creck Formation;
OD, Okanogan dome; Oh, Ohanapecosh Formation; PB, Pittsburg Bluff Formation; PC, Pipestone Canyon Formation; PG, Puget Group; Ro,
Roseburg Formation; RR, Raging River Formation; Rs, Roslyn Formation; Sa, Sanpoil Volcanics; SB, sandstone of Scow Bay; SD, Spokant !
dome; SP, Silver Pass volcanic member (of Swauk Formation); SR, Siletz River Volcanics; Sw, Swauk Formation; TP, Tunnel Point Sandstone,
TR, Twin River Group; TV, Tillamook Volcanics; Ty, Tyee Formation; uM, McIntosh Formation (upper part); Wn, Wenatchee Formation;
YB, Yachats Basalt; Yh, Yamhill Formation.
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FiG. 3. Distribution of major Eocene sedimentary deposits in
Oregon and Washington and their directional information. Measured
and generalized paleocurrent directions determined from sedimentary
structures. N is the number of measurements. Range of possible
paleocurrent directions determined from sandstone compositional
variations. Data sources—Chuckanut Formation: Johnson (19844);
Coaledo, Tyee, and Roseburg —Lookingglass formations: Heller and
Ryberg (1983); Cowlitz Formation in Oregon: Timmons (1981),
Niem and Van Atta (1973); Cowlitz Formation in Washington:
Snavely et al. (1958), Heller (1983); Herren unit: Heller (1983); Lyre
Formation and Twin River Group (part): Snavely er al. 1980a; sand-
stone of Megler: Heller (1983); Payne Cliffs Formation: McKnight
(1984); Puget Group: Buckovic (1979); sandstone of Scow Bay:
Melim (1984); Swauk and Chumstrick formations: Buza (1979);
Yager Formation: Underwood (1983); Yamhill Formation: Heller
(1983).

lith, which is known to have been rapidly uplifted and
unroofed during this time (Ferguson 1975; Criss et al. 1982).
In Washington, source areas are presumed to be the North
Cascades and Okanogan uplands (Gresens efal. 1981;
Johnson 1984a). (3) Volcanolithic sandstones and other tuffa-
ceous sedimentary rocks dominate deposits younger than about
40 Ma (e.g., Nestucca, Coaledo, Blakeley, and Lincoln Creek
formations) (Figs. 2a, 2b). Cascade volcanic-arc rocks appear
to be the source for much of the volcanic detritus in these units
(Snavely and Wagner 1963; Dott 1966; Galloway 1974; Heller
and Ryberg 1983).

Deposition during Paleogene time primarily took place in
collisional (synorogenic) basins, marine forearc basins, and
nonmarine graben and (or) pull-apart basins. Collisional basin
deposits are only found in the Coast Ranges and are related to
seamount accretion or subsequent accretionary wedge develop-
ment (Tabor and Cady 1978b; Heller and Ryberg 1983).
Deformed submarine-fan deposits and discontinuous belts of
mélange of the Roseburg Formation in the southern Oregon

Coast Range are interpreted as representing trench sedimentg.
tion typical of convergent margins (Ryberg 1983). Depositiop.
ally overlying the Roseburg Formation are moderate- to
coarse-grained, nonmarine to marine deposits of the Looking_
glass and Flournoy formations of early Eocene age (Baldwiy
1974; Molenaar 1985) (Fig. 2a). Overlapping all of these Unitg
are relatively mildly deformed sandy deltaic to submaripe.
ramp facies of the Tyee Formation (Snavely et al. 1964; Chan
and Dott 1983; Heller and Dickinson 1985) that are interpreted
as post-collisional forearc-basin deposits (Heller and Ryberg
1983). The transition is recorded by an upsection decrease in
intensity of deformation, paleodepth of water, and abundance
of locally derived lithic detritus.

Overlying the collisional-basin deposits in Oregon and
southwest Washington are arkosic to volcanolithic sandstoneg
deposited in marine forearc basins. These units include the
Tyee Formation and younger deposits in the Oregon Coast
Range and the McIntosh and Cowlitz formations and overlying
units in the Columbia River area (Fig. 2a). The lower member
of the Cowlitz Formation in northwestern Oregon now serves
as the reservoir for gas in the Mist field. These basins are char-
acterized by rapid sedimentation rates; rates for the Tyee
Formation may have exceeded 650 m/Ma (Heller and Dickip-
son 1985). Deposition in these basins postdated collision of
volcanic basement against North America (Heller and Rybe
1983; Snavely 1984). Basin configuration probably followed
previous topography that developed during collision.

Following collision of volcanic terranes in the Pacific North-
west, marine deposits continued to accumulate and deform
along an active trench, building an accretionary prism of sedj-
mentary rocks on the Olympic Peninsula and off the coast of
Oregon (Snavely et al. 1980a). In the core of the Olympic
Mountains the accretionary prism consists of packages of
highly deformed and partially metamorphosed marine sand-
stones and siltstones that are separated by high-angle faults. In
these rocks, the age, amount of deformation, degree of meta-
morphism, and number of intercalated tectonic lenses of basalt
and gabbro generally decrease toward the west (Tabor and
Cady 1978a). The clastic rocks are lithic to feldspathic sand-
stone from both basaltic and continental sources. These units
are interpreted as turbidites that have been deformed into an
accretionary wedge along an inner trench slope (Stewart 1970;
Tabor and Cady 1978a, 1978b). The major high-angle faults
between and within the sedimentary packages are interpreted
as folded thrust faults that formed as successive increments of
sediments underthrust the accumulating accretionary wedge
along the subduction zone (Tabor and Cady 1978b). The
source area and pre-accretionary displacement history of sedi-
mentary rocks in the Olympic core are, as yet, unknown.

The Eocene sedimentary sequence along the periphery of the
northern Olympic Peninsula (Fig. 2) is much less deformed
than the Olympic core rocks. The source area for the Eocene
sequence probably was nearby Vancouver Island to the north
(Ansfield 1972; Snavely et al. 1980a). The northern Olympic
rocks consist of a deepening-upward sequence of slope to sub-
marine fan to basin plain facies that resulted from continued
subsidence (Fig. 2a) (Ansfield 1972; Snavely et al. 1980a).
Collision of the seamounts that were the origin of the Crescent
Formation was probably complete prior to deposition of these
units; however, minor deformation and continued subsidence
within this basin suggest that some intraplate compression con-
tinued in this region until middle Miocene time. Sedimentation
along the northern Olympic Peninsula, therefore, represents
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Continental sedimentary rocks of Eocene age are mostly
Jimited to graben or wrench-type pull-apart basins in the North
Cascade Range, the Puget trough (Johnson 1985), and the
Okanogan region (Fig. 2b). Possible exceptions are thin
sequences of fluvial or deltaic deposits of the Payne Cliffs For-
mation in the Klamath Mountains (Fig. 3) (McKnight 1984)
and the Herren unit in the Blue Mountains (Fig. 3) (Pigg 1961;
Elmendorf and Fisk 1978). In contrast, sedimentation in basins
formed in graben or pull-apart settings is characterized by very
thick, rapidly deposited alluvial sequences such as the Chuck-
anut Formation of Johnson (1984a), 6000 m thick and
deposited at a rate of about 400 m/Ma (Johnson 1984a); the
swauk Formation, 6800 m thick (Tabor et al. 1984); and the
Chumstick Formation, 5800 m thick (Gresens et al. 1981).
Rapid deposition of deltaic facies of the Puget Group at about
250 m/Ma (Turner er al. 1983) suggests deposition in a similar
pull-apart tectonic setting. Restricted deposition of the marine
Blakeley Formation in the Puget Sound basin (McLean 1977)
(Fig. 2b) during late Eocene and Oligocene time may also
represent sedimentation in a pull-apart basin (J. C. Yount, oral
communication, 1982).

deformed forearc-basin

Tectonic styles

Compressional tectonics

Collisional deformation of Paleogene age in the United
States Pacific Northwest is limited to the Oregon Coast Range
and Olympic Mountains. Rocks were intensely deformed in
both areas by collision of oceanic seamounts at roughly 50 Ma
and, in the Olympic Mountains, by subsequent accretionary
tectonics. In the Oregon Coast Range, cast-northeast-trending
thrust faults juxtapose the Roseburg Formation with the
Mountains (Fig. 1) and cut
the Tertiary volcanic basement and overlying sedimentary
rocks of the Roseburg Formation (Baldwin 1974; Ryberg
1983).

Collision of the Crescent terrane of the Olympic Mountains
took place about 50 Ma as evidenced by (1) inclusion of conti-
nental detritus within the deformed Crescent basalts of early
and early middle Eocene age (ca. 55 Ma, Duncan 1982), indi-
cating that these ocean islands were forming near the conti-
nental margin at this time (Cady 1975); and (2) olistostromal
blocks derived from deformed Crescent Formation in late
middle to late Eocene (45 Ma) sedimentary rocks that peripher-
ally overlie the Crescent (Snavely, in Muller er al. 1983).
Stacked reverse faults having westward tectonic transport and
local pervasive deformation of Eocene through late middle
Miocene sedimentary and volcanic rocks in the core of the
Olympic Mountains (Fig. 1) were formed by the growth and
deformation of an accretionary prism during plate convergence
(Tabor and Cady 19784, 1978b). The especially thick accumu-
lation of accretionary-prism sediment in this region has also
been ascribed to gravitational nappes descending from an area
rapidly uplifted during triple-junction migration (Fox 1983). In
addition, the continual northward migration of oceanic plates
relative to North America may have transported Tertiary
terranes along the edge of the continent until they encountered
Vancouver Island and were trapped south of it. In this model,
ongoing convergence continued to squeeze the Olympic rocks
of the Crescent terrane against and under Vancouver Island

(Yorath er al. 1985). Such intraplate shortening is recorded by
folds, thrust, and reverse faults in rocks along the northern
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Olympic Peninsula and the Vancouver Island shelf (MacLeod
et al. 1977; Muller et al. 1983; Yorath er al. 1985) and may
be related to the possible emplacement of the Leech River
Schist along the southern tip of Vancouver Island at about
40 Ma (Fairchild and Cowan 1982). Folding of the Olympic
Structure into its present broad horseshoe shape (Fig. 1) may
have occurred during accretion (Tabor and Cady 1978b; Beck
and Engebretson 1982) or during more recent extension in the
Pacific Northwest.

Transcurrent faults

Large-scale strike-slip faults that probably were active
during Paleogene time have been documented or inferred
throughout western Washington and Oregon. The most notable
of these features is the Straight Creek fault (Fig. 1), which runs
along the North Cascade Range of Washington (Misch 1977,
Vance and Miller 1981) into Canada where it joins the Fraser
fault system (Davis er al. 1978; Ewing 1980; Price et al.
1985; Price and Carmichael 1986). Right-lateral movement
along the Straight Creek fault was apparently active from late
Cretaceous through early Eocene time, but Oligocene and
early Miocene plutons that cut the fault are generally not dis-
turbed (Vance and Miller 1981; Tabor et al. 1984; Vance
1985). The amount of early Tertiary displacement may be in
excess of 100 km, inferred from the proposed offset of faults
and major lithologic units (Price eral. 1985; Kleinspehn
1985). Movement along this fault may have formed pull-apart
basins in which the Chuckanut Formation of Johnson (1984a)
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and the Swauk Formation were deposited, and they may subse-
quently have been displaced by it (Tabor et al. 1984; Johnson
1984a, 1984b, 1985). At the southern terminus, the Straight
Creek fault is obscured by overlapping rock units, but jt may
curve eastward into the trend of the Olympic Wallowa linea-
ment (Tabor and Frizzell 1979), may continue straight (Davis
et al. 1978), may curve westward toward the mid-Tertiary
continental margin (Heller 1983), or may end, with displace-
ment transferred to faults to the west (Johnson 1984b).
Several northwest-trending faults that Join or are cut by the
Straight Creek — Fraser fault system also may have accommo-
dated dextral shear during early and mid-Tertiary time. These
structures include the Entiat fault (Laravie 1976) and the Ross
Lake fault (Misch 1977; Kleinspehn 1985) along the east edge
of the North Cascade Range in Washington (Fig. 1), a pro-
posed but not exposed strike-slip fault that may underlie the
Puget trough (Johnson 1984b), and a proposed structure
beneath the continental shelf of Oregon (Snavely et al. 19805,
1982).
The widespread distribution of these subparallel structures
suggests that they may have accommodated nonrigid, intra-

_

5515 ma

Successive
Volcanic
Fronts

\

~
ﬂﬂ -
\l\ Ko

plate deformation that developed in response to the oblique
subduction of the Kula or Farallon plates beneath North
America (Davis et al. 1978; Ewing 1980; Beck 1983). Recon-
structed relative plate motions (Engebretson ez al. 1985; Rea
and Duncan 1986) indicate a large northward component of
movement of the Pacific Basin plates with respect to the North
American plate during Paleogene time. Similar intra-arc strike-
slip faults form in response to oblique subduction in some
modern convergent margins (Beck 1983).

Extensional tectonics

Just prior to 50 Ma, regional extension began in the area east
of the Oregon and Washington Coast Ranges. Fault-bounded
basins developed within the Cascade Range of Washington and
included the Chuckanut Basin (Johnson 1984a), Chiwaukum
graben (Gresens et al. 1981), and Swauk Basin (Tabor et al.
1984). Dike swarms were emplaced in the eastern Cascades
about 50 Ma, including the Teanaway (Tabor er al. 1982b),
the Golden Hom — Monument Peak (Tabor et al. 1968), and
the Duncan Hill — Cooper Mountains — Railroad Creek
(Cater and Wright 1967; Tabor et al. 1980) dike swarms, all of
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anesare £ which trend generally northeast, and the Corbaley Canyon dike

# swarm, which trends west-northwest (Gresens 1982). Strike-

4 slip faults and low-angle faults with normal (i.e., younger over

§ older) displacements developed during this time in eastern

oblique § Washington, Idaho, and western Montana (Armstrong 1974;

North § LeBrecque and Shaw 1973; Mapel and Shropshire 1973;

Recon- 3 Ruppel 1968, 1980; Rhodes and Cheney 1981; Rasmussen and

35 Rea ¥ Fields 1983; Harms and Price 1983; Bennett 1986). Per-

nent of % haps the most striking features of extensional origin are the

:North % metamorphic core complexes that developed in northeastern

strike- 4 Washington (Okanogan, Kettle, and Spokane domes) and
1 some

4 Idaho (Bitterroot and Pioneer core complexes) (Coney 1979;
# Ammstrong 1982). Although the origin and development of the
$ core complexes are controversial, they appear to be part of the
# belt of metamorphic core complexes that runs along the length

cacast 2 of the Cordilleran hinterland from British Columbia to Mexico
’Un::g 4 and formed as a result of regional extension (Coney 1979,
on

# Armstrong 1982).
4 Although the timing of many of these extensional events is
= poorly constrained, the best evidence from dated sedimentary
3 and volcanic sequences involved in these events and from the
8 uplift ages on basement terranes suggests that extension begun
£ by about 50 Ma was primarily a Paleogene event (Armstrong
4 1974, 1982; Tabor et al. 1980, 1984; Fox and Beck 1985;
| Price and Carmichael 1986; Templeman-Kluit and Parkinson
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1986) and may continue today. In some way regional exten-
sion may be related to the transcurrent faulting previously
described (Ewing 1980; Price and Carmichael 1986).

Tectonic rotation

One of the most striking and enigmatic aspects of the Ceno-
zoic development of the Pacific Northwest is the large-scale
tectonic rotation of terranes throughout the region that is indi-
cated by paleomagnetism. Paleomagnetic study of igneous and
sedimentary sequences has shown that the Oregon Coast
Range and Washington Coast Ranges, the Cascade Range in
Oregon and southern Washington, the Clarno Formation in
central Oregon, volcanic rocks of Challis age in northeastern
Washington, and Mesozoic terranes in the Klamath and Blue
Mountains all have been rotated clockwise since their time of
formation (Simpson and Cox 1977; Magill er al. 1981; Beck
1980; Hillhouse et al. 1982; Mankinen and Irwin 1982; Wells
and Coe 1985; Wilson and Cox 1980). Many workers have
noted that the rotation history of the Oregon Coast Range is
different from that of the Washington Coast Ranges and have
suggested that these ranges behaved as discrete blocks rather
than as one large rigid block.

Three principle models have been proposed to explain the
tectonic rotation of this region (Beck 1980). In one model rota-
tion occurred as rigid oceanic fragments pivoted during colli-
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sion with North America (Simpson and Cox 1977; Magill
et al. 1981; Hillhouse et al. 1982). In the second model, rota-
tion occurred during later extensional deformation in the
Cordillera that began after the collisions were complete
(Simpson and Cox 1977; Coney 1979; Magill et al. 1981,
Heller and Ryberg 1983). In the third model rotations occurred
as the continental margin responded on a variety of scales to a
right-lateral shear couple, possibly driven by oblique subduc-
tion of oceanic plates to the west (Beck 1980; Wells et al.
1984). Each of these mechanisms probably contributed to
various extents. Tertiary rotation south of the Olympic Moun-
tains occurred after collisions were complete, however (Wells
et al. 1984; Heller and Ryberg 1983), suggesting that the
second model is the most important one in that area.

Paleogeographic reconstructions

From the data described previously we can interpret the
paleogeographic development of the Pacific Northwest during
Paleogene time (Figs. 4—7). In order to draw the reconstruc-
tions, we made certain assumptions conceming palinspastic
restoration. First, we assumed that except for minor displace-
ments along Tertiary faults, Mesozoic terranes reached their
present positions relative to cratonal North America by Ceno-
zoic time. Although some of these terranes were possibly
emplaced as recently as Tertiary time (Monger and Irving
1980; Tabor et al., in press), displacement histories are not yet
well known.

We made a second assumption about the timing and magni-
tude of extension that affected the Cordillera during Cenozoic

time. Reported west-southwest and west-northwest extension
with the Great Basin (Zoback et al. 1981) would have the
effect of moving outboard terranes westward relative to the
craton. Extension began in Idaho, Oregon, Washington, and
western Montana by about 40 Ma, as discussed previously by
Bennett (1986). To the south, in the Great Basin, pre-Basin
and Range extension began about 40 Ma and Basin and Range
extension began post-17 Ma (Proffett 1977; Coney 1979; Solo-
mon et al. 1979; Zoback et al. 1981; Gans and Miller 1983).
Best-constrained estimates of the total amount of Cenozoic
extension range from 30 to 100% in the central Great Basin
(Proffett 1977) and from 65 to 100% in the southem Great
Basin (Wernicke et al. 1982). For palinspastic restoration we
arbitrarily assumed that 65 % extension has occurred across the
Great Basin and that about 20% extension, likely a minimum
value, has occurred along the United States — Canada border
(see Fox and Beck 1985). These values are consistent with the
rotations of terranes in the Pacific Northwest (Gromme et al.
1986; Wells and Heller, in press). A different estimate of the
magnitude of extension would affect the location, but not the
timing, of events relative to the craton.

We do not know what lies beneath the basaltic shroud of the
Columbia Plateau. Geophysical studies indicate the lithosphere
is about 25 km thick (Smith 1978), which is considerably
thinner than surrounding lithosphere. The thinness of the litho-
sphere implies that the region has been extended by a signifi-
cant amount (Laubscher 1981). Gresens and Stewart (1981)
indicated that the Eocene and Oligocene arkosic sedimentary
sequences on the northern part of the plateau probably extend
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TABLE 1. Sources of data for paleogeographic reconstructions

Major units or features

References

Relative plate vectors

Tillamook and Siletz River volcanics and Crescent
Formation

Roseburg and Lookingglass formations

Yager Formation

Chuckanut and Swauk formations, Pipestone Canyon
Formation of Barksdale (1948)

Herren unit

Princeton gorge (submarine canyon)

Challis Volcanics and Cascade volcanic rocks; Clamo
Formation

Eastern limit of the thrust belt
Aldwell and Lyre formations, Twin River Group

Straight Creek, Entait, and Pasaytan faults

12. Puget Group, Naches Formation

13. Mclntosh, Lincoln Creek, and Cowlitz formations, etc.

14. Cowlitz, Keasey, Pittsburg Bluff, Scappoose formations

15. Tyee, Yamhill, Nestucca, Alsea, Yaquina, Eugene
formations

16. Tillamook Volcanics

17. Yachats Basalt and correlative rocks

18. Strike-slip fault

19. Tyee, Elkton siltstone member (of Tyee Formation), Bate-
man, Coaledo, Spencer formations, and correlative rocks

20. Kettle, Okanogan, Priest River, Bitterroot, Pioneer, Albion
metamorphic core complexes, Republic graben

21. Chumstick, Roslyn, and Wenatchee formations

22. Fluvial sedimentary rocks

23. Strike-slip faults

24. Low-angle normal (?) faults

25. Three Forks Basin

26. Subduction complex

27. Blakeley Formation

28. Goble Volcanics and upper part of Crescent Formation

29, Subduction complex

30. Idaho batholith

31. Renova and Passamari formations

32. Leech River and San Juan faults

33. Dike swarms

Engebretson et al. (1985)

Snavely et al. (1968), Tabor and Cady (1978a, 1978b), Duncan
(1982)

Miles (1981), Heller and Ryberg (1983), Molenaar (1985)

Underwood (1983)

Barksdale (1948), Johnson (1984a), Tabor er al. (1984)

Pigg (1961), Elmendorf and Fisk (1978)

Dickinson et al. (1979)

Armstrong (1978), Engels er al. (1976), Daniel and Berg (1981),
Fiebelkom er al. (1983), Lux (1982), Frizzell and Vance
(1983), Gromme et al. (1986)

Armstrong and Oriel (1965), Harrison et al. (1974)

Brown et al. (1956), Brown and Gower (1958), Drummond
(1978), Snavely er al. (1980a, 1980b), Rau (1981)

Davis et al. (1978), Lawrence (1971), Vance and Miller (1981),
Gresens (1982), Tabor et al. (1980, 1984)

Vine (1969), Buckovic (1979), Tabor et al. (1984)

Snavely ez al. (1958), Rau (1966, 1981), Wells (1979, 1981)

Niem and Van Atta (1973), McDougall (1980, 1981)

Snavely er al. (1977, 1982), McDougall (1980), Rau (1981),
Heller (1983)

Magill et al. (1981), Wells et al. (1983), Wells et al. (1984)

Snavely and Wagner (1961), MacLeod and Snavely (1973),
Fiebelkorn er al. (1983)

Snavely et al. (1980a, 1980b, 1981)

Baldwin (1974), Armentrout (1980), Heller and Dickinson
(1985), Chan (1985)

Armmstrong (1982), Fox et al. (1977), Chase et al. (1978),
Cheney (1980), Hyndman (1980), Miller (1980), Rhodes and
Cheney (1981), Harms and Price (1983)

Buza (1979), Gresens et al. (1981), Tabor er al. (1982b, 1984)

Kern (1959)

Harrison et al. (1972, 1974), Bennett (1986)

Ruppel (1968, 1980), LeBrecque and Shaw (1973), Mapel and
Shropshire (1973), French (1979), Ruppel and Lopez (1981)

Robinson (1961, 1963)

Stewart (1970), Tabor and Cady (1978a, 1978b), Rau (1979)

McLean (1977)

Wells (1979, 1981), Wells and Coe (1985), Duncan (1982)

Snavely et al. (1980b, 1981), Snavely and Wagner (1982)

Ferguson (1975), Criss et al. (1982)

Kuenzi and Fields (1971), Rasmussen and Fields (1983)

Cowan (1982), Fairchild and Cowan (1982), Yorath et al.
(1985)

Cater and Wright (1967), Tabor et al. (1968, 1980, 1982b),
Gresens (1982)

$ some distance under the basalt and that similar rocks crop

out to the south in Oregon (Pigg 1961; Elmendorf and Fisk
1978), suggesting the possible continuity of sedimentary rocks
beneath the Columbia River basalt group. Gravity data suggest

a considerable mixture of intermediate(?) volcanic rock under
§ the basalt (Washington Public Power Supply System 1981),
# which we would expect in an extensional basin.

The paleogeographic maps are palinspastic, removing the

§ movements due to faulting, extension, and tectonic rotation.

However, for reference, the base maps show the state bound-

aries as they are today. An explanation of the symbols used in
§ the paleogeographic maps is shown in Fig. 4. Principal forma-

tion names and sources used in the reconstructions can be
found in Table 1.

55 + 5 Ma (Fig. 5)

Between about 60 and 55 Ma, oceanic islands (seamounts)
formed adjacent to the continental margin, perhaps on or near
the Kula—Farallon ridge or adjacent transforms. These islands
collided with the North American plate in Oregon and Wash-
ington about 50 Ma, causing the subduction zone to jump to
the west. The leading edge of the Challis volcanic arc migrated
westward commencing between 60 and 55 Ma, coincident with
the end of thrusting in the foreland region (Armstrong and
Oriel 1965; Dorr et al. 1977). Thus the migration of arc
magmatism was apparently not caused by the westward jump
of the subduction zone during seamount accretion, which took
place about 50 Ma (Heller and Ryberg 1983). Furthermore, if
these small accreted terranes were detached from their litho-
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sphere during collision, then once these crustal fragments were
accreted they would have only locally affected the shape of the
subducted slab near the offshore trench (Karig er al. 1976) and
would have had no major effect on the projection of the deeper
part of the slab (Furlong ez al. 1982), which controls the loca-
tion of the arc magmatism.

Rivers flowing from the Idaho batholith during this time
debouched near the southern Klamath Mountains (Yager For-
mation) (Underwood and Bachman 1986) and, possibly, in
eastern Oregon (Herren unit). The Chuckanut—Swauk river
system tapped local source areas in the North Cascades as well
as areas to the northeast. Locally derived lithic sediments were
deposited as the seamounts collided with the Klamath Moun-
tains.

45 + 5 Ma (Fig. 6)

From about 50 to 40 Ma was a time of major crustal exten-
sion in the United States Pacific Northwest and of abundant
arkosic sedimentation along the former continental margin.
Extension was associated with transcurrent faulting and is
documented by the development of metamorphic-core com-
plexes, low-angle faults with normal separation, grabens, dike
swarms, and strike-slip faults. Although some strike-slip
movement may have occurred along the Straight Creek fault
(see above) and subsidiary faults at this time, dip-slip move-
ment predominated.

Westward migration of the volcanic arc continued until
about 40 Ma in the Pacific Northwest. Magma began erupting
and intruding in the forearc basins during this time (which was
roughly contemporaneous with the initiation of Cascade arc
volcanism) and continued into Oligocene time. Abundant sedi-
ment in the forearc region was derived from local uplifts, from
broad thermal doming associated with the westward sweep of
arc magmatism, from uplift of the Idaho batholith, from relief
produced by widespread faulting, from possible doming over
metamorphic-core complexes, and from erosion of volcanos
over a broad region.

35 + 5 Ma (Fig. 7)

Extension was somewhat abated but continued from about
40 to 30 Ma in the Pacific Northwest, as documented by struc-
tural uplift in the Idaho batholith and by developing basins
associated with faulting in western Montana (Rasmussen and
Fields 1983). Extension also began in the region south of the
Snake River plain by this time. Minor intraplate shortening of
the previously emplaced Crescent terrane (including the
Olympic Mountains) beneath Wrangellia along southem Van-
couver Island (Yorath er al. 1985) may have occurred until
about 40 Ma, coincident with cooling ages from the enigmatic
Leech River Schist (Fairchild and Cowan 1982).

Clamo volcanism waned as the Cascade arc began to erupt
about 35—40 Ma. Elevation of the Cascade Range may have
blocked rivers flowing from the east. Sedimentation rates in
the coastal basins were sharply reduced, although the ancestral
Columbia River was able to maintain flow across the Cascade
trend and deposited an extensive delta in the region of the
present mouth of the Columbia River. The ancestral Snake
River, which formerly debouched at the north end of the
Klamath Mountains, was pirated or otherwise diverted and
flowed into the ancestral Columbia River, setting up drainage
patterns that persist to the present.

Summary and conclusions

The change from a dominantly convergent tectonic regime to
an extensional and transcurrent regime occurred in Oregon and

—
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Washington near the beginning of middle Eocene time (aboy;
50 Ma). As a result, there were three phases of basin develop.
ment in the region. During the initial phase, sediments prin-
cipally accumulated in coastal basins in a convergent margip
setting. Trench and ocean-basin sediments were reworked intg
deformed accretionary prisms during the collision of oceanic
islands (Fig. 5). These deposits were composed of lithic clastjc
sediments derived from local orogenic uplands.

A second phase of basin development, in part overlapping
the first, consisted of rapid, coarse clastic sedimentatiop
that took place over a broad forearc region (Fig. 6). Specific
deposits and basins consisted of two types: (1) nonmarine sed;.
ments deposited in extensional (pull-apart?) basins genetically
related to major strike-slip faults and (2) marine sedimentg
deposited in rapidly subsiding basins along the continenta]
margin. These desposits were composed mostly of arkosjc
sandstone derived from the uplifted Cretaceous plutonic belt to
the east, including the Idaho batholith.

The final phase of Paleogene basin formation was character-
ized by a drastic reduction in both area and volume of sedimen-
tation. Sedimentation occurred primarily in shallow-marine
environments in the coastal basins. These sandstone and mud-
stone deposits were composed predominantly of volcanic—
lithic grains and tuff beds derived from the developing Cascade
volcanic arc just to the east (Fig. 7). Initiation and growth of
volcanic edifices in the Cascade arc probably acted as an effec.
tive dam for most of the west-flowing river systems draining
the Idaho batholith to the east. These river systems were
integrated into the ancestral Columbia River, whose delta and
submarine-fan systems in the northem Olympic Peninsula
were the primary sites of rapid deposition along the coastal
zone during this time.
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