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Preface

The application of statistics to environmental pollution monitoring studies requires
a knowledge of statistical analysis methods particularly well suited to pollution
data. This book attempts to help fill that need by providing sampling plans,
statistical tests, parameter estimation procedure techniques, and references to
pertinent publications. The book is written primarily for nonstatisticians (envi-
ronmental scientists, engineers, hydrologists, etc.) who have had perhaps one
or two introductory statistics courses. Most of the statistical techniques discussed
are relatively simple, and examples, exercises, and case studies are provided to
illustrate procedures. In addition to being a general reference, this book might
be used in an upper undergraduate or lower graduate level applied statistics
course or as a supplemental book for such a class.

The book is logically, though not formally, divided into three parts. Chapters
1, 2, and 3 are introductory chapters. Chapters 4 through 10 discuss field
sampling designs and Chapters 11 through 18 deal with a broad range of
statistical analysis procedures. Some statistical techniques given here are not
commonly seen in statistics books. For example, see methods for handling
correlated data (Sections 4.5 and 11.12), for detecting hot spots (Chapter 10),
and for estimating a confidence interval for the mean of a lognormal distribution
(Section 13.2). Also, Appendix B lists a computer code that estimates and tests
for trends over time at one or more monitoring stations using nonparametric
methods (Chapters 16 and 17). Unfortunately, some important topics could not
be included because of their complexity and the need to limit the length of the
book. For example, only brief mention could be made of time series analysis
using Box-Jenkins methods and of kriging techniques for estimating spatial and
spatial-time patterns of pollution, although multiple references on these topics
are provided. Also, no discussion of methods for assessing risks from environ-
mental pollution could be included.

I would appreciate receiving comments from readers on the methods discussed
here, and on topics that might be included in any future editions. I encourage
the reader to examine the references sited in the book since they provide a
much broader perspective on statistical methods for environmental pollution than
can be presented here. .

Financial support for this book was provided by the U.S. Department of
Energy, Office of Health and Environmental Research. Dr. Robert L. Watters
of that office deserves special mention for his encouragement and support.
Pacific Northwest Laboratory provided facilities and secretarial support. David
W. Engel wrote the computer code in Appendix B and helped with the trend
examples in Chapters 16 and 17. Margie Cochran developed a reference filing
system that greatly facilitated the development of the bibliography. Also, Robert
R. Kinnison provided encouragement and support in many ways including
statistical computing assistance and access to his library. The help of these
individuals is very much appreciated. I am also grateful for review comments
on drafts of this book by various reviewers, but any errors or omissions that

ix
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remain are entirely my own responsibility. The encouragement and guidance
given by Alex Kugushev during the early stages of this endeavor are also much
appreciated. I am deeply grateful to Sharon Popp who has faithfully and with
great skill typed all drafts and the final manuscript. I wish to thank the literary
executor of the Late Sir Ronald A. Fisher, F.R.S. to Dr. Frank Yates, F.R.S.
and to Longman Group Ltd., London (previously published by Oliver and Boyd,
Ltd., Edinburgh) for permission to reprint Table I from Statistical Tables for
Biological, Agricultural and Medical Research (6th Edition, 1974).

Richard O. Gilbert
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1 Introduction

Activities of man introduce contaminants of many kinds into the environment:
air pollutants from industry and power plants, exhaust emissions from
transportation vehicles, radionuclides from nuclear weapons tests and uranium
mill tailings, and pesticides, sewage, detergents, and other chemicals that enter
lakes, rivers, surface water, and groundwater. Many monitoring and research
studies are currently being conducted to quantify the amount of pollutants
entering the environment and to monitor ambient levels for trends and potential
problems. Other studies seek to determine how pollutants distribute and persist
in air, water, soil, and biota and to determine the effects of pollutants on man
and his environment.

If these studies are to provide the information needed to reduce and control
environmental pollution, it is essential they be designed according to scientific
principles. The studies should be cost effective, and the data statistically analyzed
so that the maximum amount of information may be extracted.

The purpose of this book is to provide statistical tools for environmental
monitoring and research studies. The topics discussed are motivated by the
statistical characteristics of environmental data sets that typically occur. In this
introductory chapter we discuss these characteristics and give an overview of
the principal tasks involved in designing an environmental pollution study. This
material sets the stage for Chapter 2, which develops an orientation and
understanding of environmental sampling concepts needed before a sampling
plan is devised.

1.1 TYPES AND OBJECTIVES
OF ENVIRONMENTAL
POLLUTION STUDIES

Environmental pollution studies may be divided into the followmg broad and
somewhat overlapping types.

1. Monitoring. Data may be collected (a) to monitor or to characterize ambient
concentrations in environmental media (air, water, soil, biota) or (b) to
monitor concentrations in air and water effluents. The purpose may be to
assess the adequacy of controls on the release or containment of pollutants,
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2 Introduction

to detect long-term trends, unplanned releases, or accidents and their causes,
to provide a spatial or temporal summary of average or extreme conditions,
to demonstrate or enforce compliance with emission or ambient standards,
to establish base-line data for future reference and long-range planning, to
indicate whether and to what extent additional information is required, or to
assure the public that effluent releases or environmental levels are being
adequately controlled.

2. Research. Field and laboratory data may be collected (@) to study the
transport of pollutants through the environment by means of food chains and
aerial pathways to man and (b) to determine and quantitate the cause-and-
effect relationships that control the levels and variability of pollution
concentrations over time and space.

Many design and statistical analysis problems are common to monitoring and
research studies. Environmental data sets also tend to have similar statistical
characteristics. These problems and characteristics, discussed in the next section,
motivate the topics discussed in this book.

1.2 STATISTICAL DESIGN AND
ANALYSIS PROBLEMS

Numerous problems must be faced when applying statistical methods to
environmental pollution studies. One problem is how to define the environmental
“‘population”” of interest. Unless the population is clearly defined and related
to study objectives and field sampling procedures, the collected data may contain
very little useful information for the purpose at hand. Chapter 2 gives an
approach for conceptualizing and defining populations that leads into the
discussion of field sampling (survey) designs in Chapters 3-9. The important
role that objectives play in determining sampling designs is discussed in Chapter
3.

Once data are in hand, the data analyst must be aware that many statistical
procedures were originally developed for data sets presumed to have been drawn
from a population having the symmetric, bell-shaped Gaussian (‘‘normal’’)
distribution. However, environmental data sets are frequently asymmetrical and
skewed to the right—that is, with a long tail towards high concentrations, so
the validity of classical procedures may be questioned. In this case, nonparametric
(distribution-free) statistical procedures are often recommended. These procedures
do not require the statistical distribution to be Gaussian. Alternatively, an
asymmetrical statistical distribution such as the lognormal may be shown or
assumed to apply. Both of these approaches are illustrated in this book.
Frequently, a right-skewed distribution can be transformed to be approximately
Gaussian by using a logarithmic or square-root transformation. Then the normal-
theory procedures can be applied to the transformed data. However, biases can
be introduced if results must be expressed in the original scale. Often, other
assumptions, such as uncorrelated data and homoscedasticity (constant variance
for different populations over time and space), are required by standard statistical
analysis procedures. These assumptions also are frequently violated. The problem
of correlated data over time and/or space is one of the most serious facing the
data analyst. Highly correlated data can seriously affect statistical tests and can
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give misleading results when estimating the variance of estimated means,
; computing confidence limits on means, or determining the number of measurements
' needed to estimate a mean.

Other problems that plague environmental data sets are large measurement
errors (both random and systematic, discussed in Chapter 2), data near or below
measurement detection limits (Chapter 14), missing and/or suspect data values
(Chapter 15), complex trends and patterns in mean concentration levels over
time and/or space, complicated cause-and-effect relationships, and the frequent
need to measure more than one variable at a time. Berthouex, Hunter, and
Pallesen (1981) review these types of problems in the context of wastewater
treatment plants. They stress the need for graphical methods to display data,
for considering the effect of serial correlation on frequency of sampling, and
for conducting designed experiments to study cause-and-effect relationships.
Schweitzer and Black (1985) discuss several statistical methods that may be
useful for pollution data.

Many routine monitoring programs generate very large data bases. In this
situation it is important to develop efficient computer storage, retrieval, and
data analysis and graphical software systems so that the data are fully utilized
and interpreted. This point is emphasized by Langford (1978). The development
of interactive graphics terminals, minicomputers, and personal computers greatly -
increases the potential for the investigator to view, plot, and statistically analyze
data.

In contrast to monitoring programs, some environmental pollution research
studies may generate data sets that contain insufficient information to achieve
study objectives. Here the challenge is to look carefully at study objectives, the
resources available to collect data, and the anticipated variability in the data so
that a cost-effective study design can be developed. Whether the study is large
or small, it is important to specify the accuracy and precision required of
estimated quantities, and the probabilities that can be tolerated of making wrong
decisions when using a statistical test. These specifications in conjunction with
information on variability can be used to help determine the amount of data
needed. These aspects are discussed in Chapters 4-10 and 13.

1.3 OVERVIEW OF THE DESIGN AND
ANALYSIS PROCESS

When planning an environmental sampling study, one must plan the major tasks
required to conduct a successful study. The following steps give an overview
of the process. Schweitzer (1982) gives additional discussion relative to
monitoring uncontrolled hazardous waste sites.

1. Clearly define and write down study objectives, including hypotheses to be
tested.

2. Define conceptually the time-space population of interest.

3. Collect information on the physical environment, site history, weather
patterns, rate and direction of groundwater movement, and so on, needed
to develop a sampling plan. ’

4. Define the types of physical samples to be collected (e.g., 2 L of water or
an air filter exposed for 24 h) or field measurements to be made.
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5.

10.

11.

12.

Develop a quality assurance program pertaining to all aspects of the study,
including sample collection, handling, laboratory analysis, data coding and
manipulation, statistical analysis, and presenting and reporting results.

. Examine data from prior studies or conduct pilot or base-line studies to

approximate the variability, trends, cycles, and correlations likely to be
present in the data.

. Develop field sampling designs and sample measurement procedures that

will yield representative data from the defined population.

. Determine required statistical data plots, summaries, and statistical analyses,

and obtain necessary computer software and personnel for these needs.

. Conduct the study according to a written protocol that will implement the

sampling and quality assurance plans.

Summarize, plot, and statistically analyze the data to extract relevant
information and to evaluate hypotheses.

Assess the uncertainty in estimated quantities such as means, trends, and
average maximums.

Evaluate whether study objectives have been met, and use the newly acquired
information to develop more cost-effective studies in the future.

1.4 SUMMARY

This chapter emphasized the great diversity of environmental monitoring and
research studies being conducted, the types of statistical design and analysis
problems frequently encountered with pollution data, and the major tasks required
to conduct a successful environmental sampling study.




2 Sampling Environmental
Populations

Data are easy to collect but difficult to interpret unless they are drawn from a
well-defined population of environmental units. The definition of the population
is aided by viewing the population in a space-time framework. In addition,
sources of variability and error in data from a population should be understood
so that a cost-effective sampling plan can be developed. This chapter discusses
these concepts to provide a foundation for the discussion of field sampling
designs in Chapters 3-9. More specifically, this chapter covers the space-time
sampling framework, the population unit, target population, and sampled
population, the sources of variability and error in environmental data, and the
meaning of accuracy and precision. It concludes with an air pollution example
to illustrate these concepts.

2.1 SAMPLING IN SPACE AND TIME

Environmental sampling can be viewed in a structured way by a space-time
framework, as illustrated in Figure 2.1. The symbols 7}, T,, . . . , denote time
periods such as hours, days, weeks, seasons, or years. The specific times within
the time period T; when measurements or samples are taken are denoted by ¢,
ti>, . . ., and so on. Study sites 5,, S,, . . . , denote study plots, geographical
areas, sections of a city or river basin, and other areas that are part of a larger
region. Within study sites specific sampling locations are chosen. The spatial
location is determined by east-west, north-south, and vertical coordinates.
Measurements or samples (soil, water, air) may be taken at each location and
point in time. Alternatively, several samples collected over time or space may
be combined and mixed to form a composite sample, and one or more subsamples
may be taken for measurement from each sample or composite. Compositing
of samples is discussed in Chapter 7.

Figure 2.2 shows four locations being sampled over time. Each location is
represented by a box divided into two parts, where each part represents a
replicate sample. The volume of each replicate denotes the space being sampled
(grab sample of water, a core of soil to specified depth, a volume of air, etc.).
This volume is the support of the sample, a term used by Journel and Huijbregts
(1978) and other writers in the geostatistical literature. For example, suppose a
stream is sampled at points in time for dissolved oxygen. At each sampling

5
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9.3

Double Sampling

Suppose a pilot study is conducted to estimate p. Suppose m = 10 units
are measured by both accurate and fallible methods and that the estimate
of p is 0.80. Estimate the optimum » and n’, assuming ¢, = $500, ¢ =
$350, and the total cost is fixed at $50,000. Do additional units need to
be measured? If new units are collected and analyzed, should they be
combined and used to reestimate p?

ANSWERS

9.1

9.2

9.3

Using Eq. 9.4, R should exceed 2.5 for double sampling to be more
efficient. Since R = 1.43, simple random sampling may be best. If p =
0.98, R must exceed 1.25. Since R exceeds 1.25, double sampling is
preferred.

(@) By Eq. 9.8, f, = 0.1698. Equations 9.6 and 9.7 give n = 20 and
n' = 114. (b) From Egs. 9.8, 9.9, and 9.10, f, = 0.1698, n = 21, and
n' = 119. (c) From Eq. 9.3, total cost equals $52,150. (d) Yes. The true
p could be much smaller than 0.98, so double sampling is actually less
efficient than simple random sampling. Take more measurements to obtain
a better estimate of p.

R = 143, p = 0.80. From Egs. 9.6, 9.7, and 9.8, f; = 0.63, n = 48,
and n' = 75. Since m = 10, which is smaller than 48, this implies 38
additional units should be measured by the accurate and fallible methods.
Yes.
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10 Locating Hot Spots

Chapters 4 through 9 have discussed sampling designs for estimating average
concentrations or total amounts of pollutants in environmental media. Suppose,
however, that the objective of sampling is not to estimate an average but to
determine whether ‘‘hot spots,’” or highly contaminated local areas are present.
For example, it may be known or suspected that hazardous chemical wastes
have been buried in a land fill but its exact location is unknown. This chapter
provides methods for answering the following questions when a square,

rectangular, or triangular systematic sampling grid is used in an attempt to find
hot spots:

What grid spacing is needed to hit a hot spot with specified confidence?

For a given grid spacing, what is the probability of hitting a hot spot of
specified size?

What is the probability that a hot spot exists when no hot spots were
found by sampling on a grid?

This discussion is based on an approach developed by Singer (1972, 1975) for
locating geologic deposits by sampling on a square, rectangular, or triangular
grid. He developed a computer program (ELIPGRID) that was used by Zirschky
and Gilbert (1984) to develop nomographs for answering the preceding three
questions. These nomographs are given in Figures 10.3, 10.4, and 10.5. We
concentrate here on single hot spots. Some approaches for finding multiple hot
spots are discussed by Gilbert (1982) and Holoway et al. (1981).

The methods in this chapter require the following assumptions:

1. The target (hot spot) is circular or elliptical. For subsurface targets this
applies to the projection of the target to the surface (Fig. 10.1).

2. Samples or measurements are taken on a square, rectangular, or triangular
grid (Fig. 10.2).

3. The distance between grid points is much latger than the area sampled,
measured, or cored at grid points—that is, a ery small proportion of the
area being studied can actually be measured.

4. The definition of ‘‘hot spot’’ is clear and unambiguous. This definition
implies that the types of measurement and the levels of contamination that
constitute a hot spot are clearly defined.

119
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PROJECTION TO THE GROUND SURFACE

‘ e N v
~——*’l \\ .
Aﬂl"""""’ YRR X ™

{1 SUBSURFACE POCKET OF
«— CONTAMINATION OF
-* | A CONCENTRATION DEEMED
IMPORTANT TO DETECT

Figure 10.1 Hypothetical subsurface pocket of contamination (aiter Gilbert,
1982, Fig. 1).

5. There are no measurement misclassification errors—that is, no errors are
made in deciding when a hot spot has been hit.

Parkhurst (1984) compared triangular and square grids when the objective is

to obtain an unbiased estimate of the density of waste clusters in a hazardous
waste site. He showed that the triangular grid was more likely to provide more

Square Rectangular Triangular

lt— G —> l——— 2G ——>> ’470*.‘

t— ) —P

N ( /,—-”

~

S— \ 7
——a Samples are collected at grid nodes

Figure 10.2 Grid configurations for finding hot spots (after Zirschky and Gilbert,
1984, Fig. 1).
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are expected to follow an unknown but regular pattern, the wells should be
drilled at randomly selected locations. But for randomly located clusters, a
triangular or Square grid is preferred.

10.1 DETERMINING GRID SPACING

The grid spacing required to find a hot spot of prespecified size and shape with
specified confidence may be determined from the following procedure:

1. Specify L, the length of the semimajor axis of the smallest hot spot important
to detect (see Fig. 10.1). L is one half the length of the long axis of the
ellipse.

2. Specify the expected shape (S) of the elliptical target, where

S = length of short axis of the ellipse
length of long axis of the ellipse

advance, a conservative approach is to assume a rather skinny elliptical
shape, perhaps § = 0.5, to give a smaller spacing between grid points than
if a circular or “fatter’’ ellipse is assumed. That is, we sample on a finer

accept 2 1008% = 20% chance of not finding a small hot spot, say one for
which L = 5 ¢m. Byt if L is much larger, say L = 5 m, a probability of
only 8 = 0.01 (1 chance in 100) may be required.

4. Tum to Figures 10.3, 10.4, or 10.5 for a Square, rectangular, or triangular
grid, respectively. These nomographs give the relationship between B8 and
the ratio L/G, where G is the spacing between grid lines (Fig. 10.2). Using
the curve cofresponding to the shape (S) of interest, find L/G on the horizontal
axis that corresponds to the prespecified 8. Then solve L/G for G, the
required grid spacing. The total number of grid points (sampling locations)
can then be found because the dimensions of the land area to be sampled

EXAMPLE 10.1

Suppose a Square grid is used and we Wwant to take no more than a
1008% = 10% chance of not hitting a circular target of radius
L = 100 cm or larger. Using the curve in Figure 10.3 for § = 1,
we find L/G = (.56 corresponds to 8 = (.1(. Solving for G yields
G = L/0.56 = 100 cm/0.56 = 180 cm. Hence, if cores are taken

—-—Qﬂ-"‘-
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| Figure 10.3 Curves relating L/G to consumer's risk, 3, for different target
shapes when sampling is on a square grid pattern (after Zirschky and Gilbert,
1984, Fig. 3).
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Figure 10.4 Curves relating L/G to consumer's risk, 8, for different target
shapes when sampling is on a rectangular grid pattern (after Zirschky and
Gilbert, 1984, Fig. 5).
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Probability of Not Hitting a Hot Spot 125

on a square grid with spacing of 180 cm, we are assured the
probability is only 0.10 (1 chance in 10) of not hitting a circular
target that is 100 or more cm in radius.

10.2 SIZE OF HOT SPOT LIKELY TO
BE HIT

Figures 10.2, 10.3, and 10.4 can also be used to find the maximum size hot
spot that can be located for a given cost and consumer’s risk. Suppose, for
example, we can afford to take measurements at no more than 25 locations on
a square grid system. What size elliptical target (characterized by L) can we
expect to find with confidence 1 — 8 (the probability of hitting a target at least
once)? The general procedure is to specify 8, G, and S, then use the curves to
solve for L.

EXAMPLE 10.2 "

Suppose our budget allows taking measurements at n = 25 locations
on a square grid pattern. Suppose also that a grid spacing of G =
200 cm covers the area of interest. What size circular target can we
be at least 90% confident of detecting—that is, for which the
probability of not hitting the target is 8 = 0.10 or less? Using § =
1 in Figure 10.3, we find L/G = 0.56 for 8 = 0.10. Hence, L =
(200 cm) (0.56) = 112 cm. Therefore, we estimate that a circle
with a radius of 112 c¢m or larger has no more than a 10% chance
of not being hit when using a square grid spacing of 200 cm. If the
circular target has a radius L less than 112 cm, the probability of
not locating it will exceed 0.10. Conversely, if L > 112 cm, the
probability of not locating it will be less than 0.10. If we require
only a 50% chance of hitting the target (i.e., 8 = 0.50), the curve
for § = 1 gives L/G = 0.4 or L = (200 cm) (0.4) = 80 cm.

By computing L as in Example 10.2 for different values of 8 and G, we can
generate curves that give the probability of hitting a circular or elliptical target
of any size. These curves for grid spacings of 100, 200, and 300 distance units
for two target shapes, S = 1 and 0.5, are given in Figure 10.6.

For example, suppose the target is circular (S = 1) and the grid spacing is
G = 100 units. Then the probability 3 that we do not hit a circular target of
radius L = 50 units (same units as G) is about 0.2. If the target is smaller,
say L = 20 units, then g is larger, about 0.87.

10.3 PROBABILITY OF NOT HITTING
A HOT SPOT

Figures 10.3-10.5 can also be used to estimate the consumer’s risk 8 of not
hitting a hot spot of given size and shape when using a specified grid size.
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EXAMPLE 10.3

What is the average probability of not finding an elliptical hot spot
that is twice as long as it is wide and for which the semimajor axis
(L) is 40% as long as the spacing G between grid points? Suppose
a rectangular sampling grid is used. Using § = 0.5 and L/G = 0.40
in Figure 10.4, we find 8 to be 0.87. Hence, there is about an 87%
chance that this size and shape target would not be found by sampling
at the grid points. The actual 8 could be somewhat smaller or larger
than 0.87, depending on the orientation of the target relative to the
grid.

10.4 TAKING PRIOR INFORMATION
INTO ACCOUNT

Thus far we have assumed that a hot spot does actually exist. In practice, no
such assurance may be warranted. Now we consider how prior information
about the probability that a hot spot exists can be used to obtain a more realistic
estimate of 8. Let

A = event that a hot spot of size L or larger exists

B = event that a hot spot of size L or larger is hit
by taking measurements on a grid.

Then the law of conditional probabilities (see, e.g., Fisz, 1963, p. 20) says
that

P, B)

PB|A) = P

= probability that a hot spot of size L
or larger is hit, given such a

hot spot exists 10.1
where
P(A, B) = probability that a hot spot of size L
or larger exists and is discovered
by sampling on a grid
and

P(A) = probability that a hot spot of size L
or larger exists

Whenever there is doubt whether a hot spot of size L or larger exists, then
P(A4, B) is of interest. From Eq. 10.1 we have

P(4, B) = P(B|A)P(A) 10.2

Now P(B|A) is just 1 — 8. Hence, P(4, B) can be estimated by using Figures
10.3-10.5 and by specifying a value for P(4). In many situations a hot spot of
size L or larger will be known to exist so that P(4) = 1 and P(4, B) = P(B|A).
Then if a square grid is used, Figure 10.3 gives the final result. In other
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situations an informed guess at P(A) may be made based on prior surveys and
other knowledge. Then Eq. 10.2 may be used to approximate P(A, B).

EXAMPLE 10.4

Suppose L = 100 cm and 8 = 0.10 for a circular hot spot as in
Example 10.1. Use of Figure 10.3 gives a grid spacing of G = 180
cm. Suppose also that prior information about the site suggests P(A)
is very low, say P(4) = 0.01 (1 chance in 100). Then, since P(B|4)
=1 -8 =0.90, Eq. 10.2 gives P(4, B) = (0.9) (0.01) = 0.009.
Hence, if 180-cm grid spacing is used, the probability that a hot
spot of size L = 100 cm or larger exists and is found is 0.009,
assuming P(4) = 0.01.

10.5 PROBABILITY THAT A HOT
SPOT EXISTS WHEN NONE HAS
BEEN FOUND

Suppose samples are taken on a grid spacing determined by S, L, and B, but
no hot spot of size L or larger is found. Then it is natural to ask the question,
What is the probability that a hot spot of size L or larger exists even though it
was not found? A procedure for answering that question is now given. Let

il

event a hot spot of size L or larger exists
= event a hot spot of size L or larger does not exist

= event a hot spot of size L or larger is hit

CTIE

= event a hot spot of size L or larger is not hit
Using Eq. 10.1 gives

P(A|B) = probability that a hot spot of size L or
larger exists given that our sampling
effort on a grid did not find it

P(A, B)
P(B)
But using Eq. 10.1 again, we find that the numerator of Eq. 10.3 is P(§|A)P(A).

Also, since either 4 or 4 must occur, the denominator of Eq. 10.3 can be
written as

10.3

P(B) = P(B|4) P(4) + P(B|4) P(4)
Hence
P(B|4) P(4)
P(B|4) P(4) + P(B|4) P(A)

Equation 10.4 is known as Bayes’ formula (Fisz, 1963, p. 23). Since P(E[Z)
= land P(4) = 1 — P(A), Eq. 10.4 becomes

P(A|B) = 10.4
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P(B|4) P(A)
P(B|A) P(4) + 1 — P(A)

__ BP@)
BPA) + 1 — P(A)

P(A|B) =

10.5

Hence, P(A|B) for a given grid spacing can be estimated by Eq. 10.5 if 8 and
P(A) are specified.

EXAMPLE 10.5

Suppose we can tolerate a consumer’s risk of no more than 10% of
not hitting a circular target of radius L = 100 cm or greater. This
leads to a grid spacing of 180 cm (Example 10.1). Also, suppose
P(A) = 0.01 is our best guess for the probability that a circular hot
spot of size L or greater exists at the site. If no hot spot of size L
or greater is found by taking measurements on the 180-cm grid, the
probability that such a hot spot exists at the site is estimated to be
(by Eq. 10.5)

(0.10)(0.01)
(0.10)(0.01) + 1 — 0.01

The probability P(4|B), computed by Eq. 10.5, is plotted in Figure 10.7 for
a range of values of 8 and P(A). Figure 10.7 shows that P(4) has a major
impact on the value of P(A|B). Figure 10.7 also shows the importance of
choosing a small value for 8 if we want high confidence that a hot spot has
not been missed.

EXAMPLE 10.6

Suppose we set P(A) = 0.50 and 8 = 0.10 for L = 100 cm or
larger for a circular hot spot. Then Eq. 10.5 gives P(4|B) = 0.091.
Hence, for these values of P(4) and 8 the chances are about 1 in
10 that a circular hot spot of size L = 100 cm or greater exists
even though it was not found. For 8 = 0.50, P(A4|B) increases to
0.33. P(A‘E) increases as 3 increases because larger 8’s result in
wider grid spacing. Hence, there is less chance of finding the hot
spot.

P(A|B) = = 0.001

If grid spacing is determined for a circular hot spot, but the target is actually
an ellipse, then B is actually larger than expected since a smaller grid spacing
should have been used. Looking at Figure 10.7, we see then that P(A|B) is
actually larger than expected. When in doubt about the shape of the target, the
conservative approach is to assume a skinnier ellipse (smaller value of S) than
expected, which will result in the use of a smaller grid spacing and a conservative
(larger) estimate of P(A|B). '

10.6 CHOOSING THE CONSUMER’S
RISK

Figure 10.7 can be used to help decide on a value for 3. Suppose P(A|§) must
be no larger than some prespecified value, say 0.01. That is, we want to be
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99% confident that a hot spot does not exist, given that no hot spots have been
found. If at the planning stages of the survey effort some reasonable value for
P(A) can be determined, then Figure 10.7 can be used to determine §. For
example, for P(A|§) = 0.01 and P(4) = 0.50, we find 8 = 0.01. This value
of 8 may then be used to determine grid spacing.

10.7 SUMMARY

This chapter gives methods for determining grid spacing when the primary
objective is to search for circular or elliptical hot spots. The grid spacings are
obtained so that the consumer’s risk is held to an acceptable level. The
nomographs presented for this purpose can also be used to determine the
consumer’s risk for a given grid spacing that has been used.

Since grid spacing must be small to have a high probability of finding small
hot spots, the cost of sampling and analyses can be high. For that reason
judgment is necessary to decide in advance where hot spots are most likely to
lie and to concentrate sampling in those areas. Larger grid spacing can be used
in areas where hot spots are less likely to be present.

EXERCISES

10.1 Find the required square grid spacing to achieve a consumer’s risk no
greater than 8 = 0.10 of not hitting the target if the target is expected
to be twice as long as it is wide and if L = 100 cm.

10.2 What size circular hot spot can we be 80% sure of detecting if a triangular
grid of spacing G = 10 m is used?

10.3 Determine the probébility that a circular target of radius L = 30 units
will not be hit when a square grid spacing of 200 units is used.

10.4 In Example 10.4 suppose that the probability that a circular hot spot of
radius L = 100 cm exists is 0.90 instead of 0.01. Using a consumer’s
risk of 8 = 0.25, determine P(4, B). State your conclusions.

10.5 In Example 10.5 suppose that 8 = 0.20 and P(4) = 0.60. Find P(A[E).
State your conclusions.

ANSWERS
10.1 Using Figure 10.3 when § = 0.5, we obtain L/G = 0.84 or G =
100/0.84 = 119 cm.

10.2 Using Figure 10.5, we obtain L/G = 0.47, so L = 0.47 (10 m) =
4.7-m radius circle.

10.3 Using Figure 10.7, we obtain § = 0.93.
10.4 P4, B) = P(B|A) P(A) = (1 — B) P(4) = 0.75(0.90) = 0.675.

— 0.20(0.60)
10.5 P(A|B) = = 0.23.
“iB) 02060 + 1 — 060 _ 02
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11 | Quantiles, Proportions,
and Means

This chapter discusses the normal (Gaussian) distribution and shows how to
estimate confidence limits on quantiles, proportions, and means. It then

Discusses estimators of the true mean and variance that are appropriate if
the data are nonnormal or if outliers or trace data are present

Gives nonparametric (distribution-free) methods for estimating quantiles
and confidence limits on quantiles and proportions

Shows how to put confidence limits on the mean when data are correlated

Discusses advantages and disadvantages of nonlinear transformations to
achieve normality

The normal distribution is important because many statistical procedures such
as tests of significance, confidence limits, and estimation procedures are strictly
valid only for normally distributed data. Even though most pollutants are not
normally distributed, the data can often be transformed to be approximately
normal. Also, inferences about population means of nonnormal populations are
still possible if n is sufficiently large, since in that case the sample mean, X, is
approximately normally distributed.

11.1 BASIC CONCEPTS

The normal distribution is a bell-shaped, symmetric distribution. It is described
mathematically by its probability density function

1 . [ 1( )2]
Xp| =& —u
ovN2T P 202
—o <x< oo, —olpu<ow g>0

fx) =

where f(x) is the height (ordinate) of the curve at the value x. The density
function is completely specified by two parameters, u and o2, which are also
the mean and variance, respectively, of the distribution. We use the notation
N(g, 0% to denote a normal probability density function (in short, normal
distribution) with mean x and variance o2.

Figure 11.1 shows two normal distributions. The solid curve is N(O, 1); the
dashed curve is N(1, 2.25). There is a different normal distribution for each

132
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Figure 11.1 Two normal (Gaussian) distributions: N(0, 1) and N(1, 2.25). N(O, 1)
is the “‘standard normal” distribution.

combination of u and ¢2. However, they can all be transformed to the N(O, 1)
distribution by the transformation

That is, the random variable Z has the N(O, 1) distribution shown in Figure
11.1 if the random variable X is Ny, 0%). Z is commonly called a standard
normal deviate.

Figure 11.2 shows the density function f(x) and the cumulative distribution
Junction (CDF) for a N, o?) distribution. The CDF is denoted by F(x) and
is defined as follows: ’

F(x) = Prob [X < x]

= probability that the random variable
X will take on a value less than
or equal to a specified value x

In other words, F(x) gives the cumulative percentage of the normal density
function that lies between —oo and the point x on the abscissa.

From Figure 11.2 we see, for example, that 2.15% of the density function
lies between u + 2¢ and ¢ + 30, 2.28% lies below # — 20, and 2.28% lies
above u + 2¢. Stated another way, p ~ 20 is the 0.0228 quantile of the N(u,
o?) distribution, or Xo.0228 18 the quantile of order 0.0228. Similarly, p + 2¢
is the 0.9772 quantile of the N(u, 0 distribution. More formally, the pth
quantile, x, (where 0 < P < 1), is the value such that the probability is p
that a unit in the population will have an observed value less than or equal to
Xp, and the probability is 1 — p that a units value will be larger than x,. The
median is the 0.5 quantile, and Xo.25 and X, ;5 are the lower and upper quartiles,
respectively. Quantiles are also called percentiles.

. ‘Tr—-
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Figure 11.2 Areas under the normal probability density function and the
cumulative normal distribution function (after Sokal and Rohlf, 1981, p. 103.)

11.2 ESTIMATING QUANTILES
(PERCENTILES)

Quantiles of distributions are frequently estimated to determine whether envi-
ronmental pollution levels exceed specified limits. For example, a regulation
may require that the true 0.98 quantile of the population, x; ¢35, must not exceed
1 ppm. In practice, x, must be estimated from data. This section gives two
methods for estimating x, when the underlying distribution is normal. The
following section shows how to put an upper confidence limit on x, when the
distribution is normal. Methods for estimating quantiles of a lognormal distribution
are given in Section 13.6.

Quantiles of a normal distribution can be estimated by using the sample
mean, X, and standard deviation, s, as computed by Eq. 4.3 and the square
root of Eq. 4.4, respectively. Suppose the n data are a simple random sample

from a normal distribution. Then x, is estimated by computing
i, =X+ 2Zs 11.1

where Z, is the pth quantile of the standard normal distribution. Table Al gives
values of p that correspond to Z,. For example, £, 9772 = X + 2s is an estimate
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of the 0.9772 quantile of the distribution because Table Al gives Zy 9770 = 2.
Similarly, £o,0208 = X — 2s is an estimate of the 0.0228 quantile because Zy 0208
= —2.

Saltzman (1972) gives a nomograph (his Fig. 2) for finding Z,s without
looking up Z, in Table Al. The user supplies s and p, and the resulting value
of Z,s from the nomograph is added (by the user) to ¥ to obtain b A

Another method of estimating normal quantiles is to use probability plotting.
The procedure is to first order the untransformed data from smallest to largest.
Let xyy < xgy < * - < xp, denote the ordered data. The xy; are called the
order statistics of the data set. Then plot x;; versus (i — 0.5)100/n on normal
probability paper. If the data are from a normal distribution, the plotted points
should lie approximately on a straight line. If so, a best-fitting straight line is
drawn subjectively by eye. Then quantiles can be easily approximated from the
plot. An objective method for fitting a unique straight line to the points was
developed by Mage (1982a, 1982b).

EXAMPLE 11.1

Figure 11.3 shows a normal probability plot for the concentration
of 2! Am (pCi/g) for 20 soil samples collected near a nuclear facility
(Price, Gilbert, and Gano, 1981). A straight line (fit by eye) fits the
plotted points reasonably well, suggesting the underlying distribution
may be normal. Using the line, we estimate the 0.9 quantile to be
0.065 pCi/g. Similarly, we estimate the 0.5 quantile to be 0.038

ZdlAm
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Figure 11.3 Normal probability plot of 2*'Am pCi/g soil data (after Price et al.,
1981).
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pCi/g. Since the normal distribution is symmetrical, the true mean
and median of the distribution are identical. Hence, the 0.5 quantile ‘ ;
estimates both the mean and median of the normal distribution. The
standard deviation, ¢, may be estimated from the probability plot ]
by computing (£yg; — £o.16)/2, Where £ g4 and £ s are the 0.84 i

and 0.16 quantiles as read from the plot. From Figure 11.3 we find v
£084s = 0.059 and £,,, = 0.0165. Hence, the estimated standard ¢
deviation is (0.059 — 0.0165)/2 = 0.021. For this data set, x = ¢
0.0372 and s = 0.0211, which agree well with the estimates obtained L
from the probability plot. .
‘il
11.3 CONFIDENCE LIMITS FOR 4
QUANTILES } -
: 3
An upper 100(1 — «)% confidence limit for the true pth quantile, x,, can be j e
easily obtained if the underlying distribution is normal. This upper limit, denoted i o
by ULl —a(xp), is
UL _o(x,) =X + sK;_qp 11.2
where K;_,, , is obtained from Table A3 for specified « and p. Note that Eq. |
11.2 is identical to Eq. 11.1 except that K,_, ,replaces Z, and K,_,,> Z,. .
This upper limit could be used to test whether the true x, for the sampled ‘ 5
population actually exceeds a specified x,. One rule would be to conclude that ; 1‘1‘
i the specified x, has been exceeded unless the estimated upper limit UL, _ ,(x,) ! p('
IS is less than the specified x,.
ik EXAMPLE 11.2
: First, we shall use Eq. 11.1 to estimate the 0.99 quantile of the | 1
H (assumed) normal population from which the 241 Am data in Example ,
' 11.1 were drawn. Then Eq. 11.2 will be used to estimate an upper { Tt
"_":_; ] 90% confidence limit for the true 0.99 quantile. Since p = 0.99, ; me
we find from Table Al that Z;4 = 2.3263. Also, from Example ‘ di:
11.1, ¥ = 0.0372 and s = 0.0211. Therefore, Eq. 11.1 gives £y95 - i Ts
f»"'f = 0.0372 + 2.3263(0.0211) = 0.0863 as the estimated 0.99 quantile sp
A of the underlying distribution. J dit
R Now, referring to Table A3, we find that K, _, , = 3.052 when : to
T n =20, = 0.10, and p = 0.99. Therefore, Eq. 11.2 gives ’ Se
B | un
qill co,
11.4 ESTIMATING PROPORTIONS arc
A In Section 11.2 we learned how to estimate the concentration x, such that 100(1 i
1 — p)% of the population exceeds x,. The procedure was to first specify p and i )
‘TS then to determine £,. In this section we are interested in the reverse procedure, i 11
Had ! that is, we first specify a concentration, say x., and then we estimate the ' If »
il proportion p,_ of the population exceeding x.. This latter approach is suitable the
EHE if regulations specify that the proportion of the population exceeding a specified ‘ He
) _‘;: concentration x, (upper limit) must be less than some specified value. ; aba
[
i _

i )
bl
N C



Two-Sided Confidence Limits for the Mean 137

If the random variable X is known to be normally distributed with parameters
# and o2, then the proportion of the population that exceeds X, is

P =Prob[X > x] = 1 _ ¢<x”;"> 11.3
g

where ¢ denotes the cumulative distribution function (CDF) of the NO, D
distribution. For example, if y = 1 and ¢2 = 2.25 (the dashed-line normal
distribution in Fig. 11.1) and we want to determine the proportion of the
population exceeding x, = 3, then

Xe = p\ 3-1 _
¢ <T> B "’((2.25)"2) = ¢33

Using Table A1, we find ¢(1.33) = 0.9082. Hence, p, = Prob[X > 3] = |
— 0.9082 = 0.0918. Hence, 9.18% of this normal population exceeds X, =
3. Of course, in practice, u and ¢? are almost never known a priori. Then the
estimates ¥ and s are used in place of p and ¢ in Eq. 11.3. Hence, the estimate
of p, is

X, — X
——

§

x. directly off the plot. For example, using the normal probability plot in Figure
11.3, we see that an estimated 15% of the population exceeds x. = 0.06
PCi *'Am/g.

11.5 TWO-SIDED CONFIDENCE LIMITS
FOR THE MEAN

This section shows how to compute two-sided confidence limits for the population
mean u when either the data values X; or the estimated mean, X, are normally
distributed. Methods appropriate for lognormal data are given in Chapter 13,
Two-sided limits give an interval in which the true mean is expected to lie with
specified confidence. This interval can be compared with intervals computed for
different times and/or areas. One-sided limits can also be computed and used
to test for compliance with environmental limits. These limits are discussed in
Section 11.6.

Throughout this section Wwe assume the data are independent and therefore
uncorrelated. Methods for computing confidence limits about 1 when data are
correlated are given in Section 11.12, an important topic because pollution data
are frequently correlated if collected at short time and/or space intervals.

Hence, if ¢2 ig known a priori, a two-sided 100(1 ~ @)% confidence interval
~ about y is
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. x — 2 —_— =< <x+Z —_— 11.4
x [+ o .
1-al2 J— ® 1-al2 J—

where o/+/n is the standard error of X and Z, _ .2 is the value of the standard
normal variable that cuts off (100a/2)% of the upper tail of the N(0, 1)
distribution. From our discussion of quantiles in Section 11.2, we know that
Z, on is the 1 — /2 quantile of the N(0O, 1) distribution. Values of Z, _,;,
are obtained from Table Al. For example, if @ = 0.05, then Z; g;5 equals 1.96
and Eq. 11.4 becomes

o g
x—-19—==<pu=sx+19—F
Jn = F Jn
This interval is easily computed, since ¢ is known by assumption and X can be
computed from the n data.

11.5.2 Unknown Variance

For the more realistic case where o is unknown, the two-sided 100(1 — )%
confidence interval about u is

X~ isusf+z‘_ _i 11.5
—a/2,n—-l\/’_l 1-al2,n l\/;

where s is an estimate of ¢ computed from r data drawn at random from a
normal distribution, and #; _, ,- is the value that cuts off (100c/2)% of the
upper tail of the r distribution that has n — 1 degrees of freedom (df). The
cumulative ¢ distribution for various degrees of freedom is tabulated in Table
A2. The validity of Eq. 11.5 does not require n to be large, but the underlying
distribution must be normal.

Returning for a moment to Eq. 11.4 when o is known, we see that the width
of the confidence interval (upper limit minus lower limit) is constant and given
by 2(1.96)0/«/;1. But when ¢ is replaced by an estimate s as computed from a
particular data set, the width will vary from data set to data set. Hence, even
though two data sets are drawn at random from the same population, the width
of the estimated confidence limits will be different.

It is instructive to discuss the meaning of a 100(1 — )% confidence interval.
Suppose we repeat many times the process of withdrawing n samples at random
from the population, each time computing a 100(1 — «)% confidence interval.
Then 100(1 — «)% of the computed intervals will, on the average, contain the
true value p. Hence, when a 95% confidence interval is computed by using n
randomly drawn data, that interval may be expected to include the true mean
p unless this interval is one of those that will occur by chance 5% of the time.

11.6 ONE-SIDED CONFIDENCE LIMITS
FOR THE MEAN

The upper one-sided 100(1 — )% confidence limit for g when o is known is

UL]—O( =E+Z|_a%
n
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Similarly, the upper limit when o is estimated by s is
UL,_, =% +1¢ = 11.6
|-« l—a,n-1 \/’; *

The corresponding lower one-sided limits are

and

LL, = 11.7

Xt =
l—-a,n—1 \/;
respectively. Note that the upper (or lower) 100(1 — )% one-sided limit uses
Zy_o o1ty _,, whereas 100(1 — «)% two-sided limits use Z| o O by _on-
For example, if « = 0.05, Z, o5 = 1.645 is used for computing a one-sided
limit on p, whereas Z; ¢;5 = 1.96 is used for the two-sided limits.
Upper limits on the true mean x may be computed to test for compliance
with regulations that specify some mean value, say p;, as an upper limit. If
UL, _, > p,, this might be taken as evidence that u may exceed y;.

EXAMPLE 11.3

First we use Eq. 11.5 to compute a 90% confidence interval (a =
0.10), using the 21Am data in Example 11.1. Since ¥ = 0.0372, s
= 0.0211,n — 1 = 19, and fo.95,19 = 1.729 (from Table A2), Eq.
11.5 gives

1.729(0.0211)

V20

Second, a one-sided upper 90% confidence limit for p is computed
by Eq. 11.6. Since 7549 ;0 = 1.328, we obtain

1.328(0.0211)

V20

0.0372 + r 0.0290 = u < 0.0454

ULyg = 0.0372 + = 0.0435

11.7 APPROXIMATE CONFIDENCE
LIMITS FOR THE MEAN

In the previous two sections we learned how to compute confidence limits for
the true mean of an underlying normal distribution. But suppose the distribution
is not normal, or suppose we are unwilling to make that assumption. Then if
n is sufficiently large, a two-sided 100(1 — a)% confidence inteval for the
mean g is approximated by

¥~ Zi o S p ST Z 11.8
XA ~dcan = p=X 1-a2 [ .
“* “* I

Similarly, for large n, approximate one-sided upper and lower 100(1 — o)%
confidence limits are
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I+Z_, % 11.9
n

and

-7 _, Ji’; 11.10

respectively.

In practice, there appears to be no simple rule for determining how large n
should be for Eqs. 11.8, 11.9, and 11.10 to be used. It depends on the amount
of bias in the confidence limits that can be tolerated and also on the shape of
the distribution from which the data have been drawn. If the distribution is
highly skewed, an n of 50 or more may be required.

11.8 ALTERNATIVE ESTIMATORS FOR
THE MEAN AND STANDARD
DEVIATION

Thus far in this chapter we have used X and s* to estimate the true mean p
and variance o2 of a normal distribution. It can be shown that for data drawn
at random from a normal distribution, ¥ and s*> are the minimum variance
unbiased (MVU) estimators of p and o2. That is, of all unbiased estimators of
¢, the mean X has the smallest error that arises because only a portion of the
population units are measured. (Unbiased estimators were defined in Section
2.5.3.) Nevertheless, ¥ and s* are not always well suited for environmental
data. For example, data sets are often highly skewed to the right, so a few
data are much larger than most. In this case, even though ¥ and s are unbiased
estimators of the mean and variance of the distribution, they may not be
accurate. If the skewed data set is believed to be drawn from a lognormal
distribution, the methods for estimating g and ¢? illustrated in Chapter 13 may
be used. That chapter also gives methods for estimating the population median
when the lognormal distribution is applicable.

A related problem is the frequent occurrence of outliers, where Hunt et al.
(1981) define an outlier to be ‘‘an observation that does not conform to the
pattern established by other observations.’” If the underlying distribution is
believed to be symmetric (but not necessarily normal) the median, trimmed
mean, or Winsorized mean can be used to estimate p, as discussed in Chapter
14.

Another problem is that environmental data sets are often censored—that is,
the actual measured values for some population units are not available. Censoring
may occur when the pollutant concentration is very near or below the measurement
limit of detection (LOD) and the datum is reported to the data analyst as
“‘trace,”’ the letters ND (‘‘not detected’’), or the LOD itself. In this case the
median, trimmed mean, and Winsorized mean may be useful because these
estimators do not use data in the tails of the data set. Alternatively, if the
censored data are believed to be from normal or lognormal distributions, the
efficient estimators illustrated in Chapter 14 may be used.

Finally, environmental data are often correlated in time and/or space. The
sample mean X is still an unbiased estimator of the mean u, but correlation
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should be taken into account when estimating Var(x). Methods for estimating
Var(¥) are discussed in Sections 4.5 and 4.6,

11.9 NONPARAMETRIC ESTIMATORS
OF QUANTILES

or unable to assume the distribution is normal, and we wish to estimate the pth
qQuantile, x,, where p is some specified proportion O < p<1). The procedure
is as follows: Draw n data at random from the underlying population and order

them to obtain the sample order statistics Xy S xg < -+ < X To estimate
Xp, we first compute k = pin + 1). If k is an integer, the estimated pth

percentile, %£,, is simply the kth order statistic xy,, that is, the kth largest datum
in the data set. If k is not an integer, %, is obtained by linear interpolation
between the two closest order statistics. This procedure is used by Snedecor
and Cochran ( 1967, p. 125) and by Gibbons, Olkin, and Sobel (1977, p. 195).

For example, if we want to estimate x; o;, the 0.97 quantile, and n = 100
data are obtained by random sampling, then k = (0.97)101 = 97.97. Since &
is not an integer, %54, is found by linear interpolation between the 97th and
98th largest of the n = 100 data.

11.10  NONPARAMETRIC CONFIDENCE
LIMITS FOR QUANTILES

Suppose we want to estimate the lower and upper 100(1 — &)% confidence
limits for the true pth quantile, X,, of an unknown distribution. If n < 20, it
can be done with the procedure described by Conover (1980, p- 112) in
conjunction with his Table A3 (pp. 433-444), which gives the cumulative
distribution function of the binomial distribution.

If n > 20, the following method may be used. First compute

I=pn+1) - Zi _anlnp(l — p)'2 11.11
and
U=pn+ 1)+ Z,_plnp(l ~ py)2 1112

Since [ and u are usually not integers, the limits are obtained by linear
interpolation between the closest order statistics. For example, if 95% limits
are desired about the P = 0.90 quantile, and if n = 1000, then

[ =0.9(1001) — 1.96[1000(0.9) (0.1)]'2 = 882.306

i W
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and
u = 0.9(1001) + 1.96[1000(0.9)(0.1)]'? = 919.494

Then the lower limit is obtained by linear interpolation between the 882nd and
883rd order statistic. Similarly, interpolating between the 919th and 920th order
statistics gives the upper limit.

One-sided confidence limits for the true pth quantile are also easily obtained.
Suppose an upper 100(1 — «)% limit is required. If n > 20, this limit is
obtained by computing

u=pn+1) +2Z_JInp1l — p)'*? 11.13

and interpolating between the two closest order statistics. For example, if the
upper 95% limit for the 0.90 quantile is desired and if n = 1000, then

u = 0.9(1001) + 1.645[1000(0.9)(0.1)]'? = 916.506

Therefore, the estimated upper limit is the value that is 50.6% of the way
between the 916th and 917th largest values. A one-sided lower limit is obtained
in a similar manner by using a negative sign in front of Z, _, in Eq. 11.13.

11.11 NONPARAMETRIC CONFIDENCE
LIMITS FOR PROPORTIONS

The two approaches for estimating proportions given in Section 11.4 are
appropriate for normal distributions. The following approach is valid for any
distribution, as long as the data are uncorrelated and were drawn by random
sampling. To estimate p,_, the proportion of the population exceeding x., we
compute

11.14

S I®

A ——
Px. =

where 7 is the number of observations and u is the number of those that exceed
X

A confidence interval for p, can easily be obtained. If n < 30, then 95%
and 99% confidence intervals can be read directly from Table A4 (from Blyth
and Still, 1983). For example, suppose n = 30 observations are drawn at
random from the population and that ¥ = 1 of these exceeds a prespecified
concentration x,. Then Eq. 11.14 gives p, = 35 = 0.033. Also, from Table
A4 we find that 0 and 0.16 are the lower and upper 95% confidence limits for
the true proportion of the population exceeding x..

If n > 30, Blyth and Still (1983) recommend that the lower and upper limits
of a two-sided 100(1 — )% confidence interval be computed as follows.

Lower Limit = 12
+ Z1_an
zZ3_
. {(u - 0.5) + % 11.15
1/2
(u — 0-5)2 Z%—a/2:|
-7 - 0.5 - +
1-al2 |:(u 0.5) n 4
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except that the lower limit equals 0 if ¥ = 0,
1

U Limit = ——
pper Limi "tz
VAR
: Z(u +0.5) + \'2“/2 11.16

52 2 1”2
T2 _an [(u + 0.5) — w + Zl;a/ZJ
n

except that the upper limit equals 1 if 4 = p.

Confidence limits about a proportion may also be obtained from data charts
given, for example, by Conover (1980, Table A4). Finally, if npy. and np, (1
~ Px) are both greater than 5, the following upper and lower limits give an
approximate two-sided 100(1 - )% confidence interval for ) 2

N (1 oA ) 172
b * Z, _a/z[p\“ 12 ""J 11.17
n

EXAMPLE 11.4

Table 11.1 gives CO vehicle emissions data [in units of grams/mijle
(8/mi)] obtained on 5 = 46 randomly selected vehicles (reported by

exceeds 15 g/mi. We also compute a 90% confidence interval about
the true proportion exceeding 15 g/mi using the nonparametric
procedure.

From Table 11.1 we find u = 4 data that exceed x, = 15 g/mij.
Therefore, Eq. 11.14 gives Pis = un = & = 0.087 as the estimated
proportion of the population exceeding 15 g/mi. The confidence
interval is obtained from Egs. 11.15 and 11.16. Table A} gives
Zy o = Zoos = 1.645. Therefore, the lower limit obtained from
Eq. 11.15 is

{4 ~05) + 2.706/2 —

1.645[(4 - 0.5) ~ (4 - 0.5246 + 2.706/41'%} 0.033
46 + 2.706 e

Similarly, using Eq. 11.16, we find that the upper limit is 0.194.
Therefore, the 90% confidence interval about the true proportion of
the population greater than 15 g/mj is fiom 0.033 t0 0.19. A point
estimate of that proportion is 0.087.

Since np,. = 4 and np, (1 ~ P) = [46(4)/46) (1 — & = 3.65,
it is possible that np,. and np, (1 — Px.) are not greater than 5.
Hence, we should not use Eq. 11.17 to obtain confidence limits.
However, for illustration’s sake, Eq. 11.17 gives

0.087(0.913)]”2
46

or 0.019 and 0.16 for the lower and upper limits.

0.087 + 1.645[
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Table 11.1 Vehicle Emission Carbon Monoxide (CO) Data (grams/mile) for n
= 46 Randomly Chosen Vehicles

Vehicle Cco Vehicle co Vehicle co

1 5.01 17 15.13 33 5.36
2 14.67 18 5.04 34 14.83
3 8.60 19 3.95 35 5.69
4 4.42 20 3.38 36 6.35
5 4.95 21 4.12 37 6.02
6 7.24 22 23.53 38 5.79
7 7.51 23 19.00 39 2.03
8 12.30 24 22.92 40 4.62
9 14.59 25 11.20 41 6.78
10 7.98 26 3.81 42 8.43
11 11.53 27 3.45 43 6.02
12 4.10 28 1.85 44 3.99
13 5.21 29 4.10 45 5.22
14 12.10 30 2.26 46 7.47
15 9.62 31 4.74
16 14.97 32 4.29

Source: After Lorenzen, 1980, Table 2.

11.12 CONFIDENCE LIMITS WHEN
DATA ARE CORRELATED

The methods given in Sections 11.5.2, 11.6, and 11.7 for placing confidence
limits about the true mean u are appropriate when the data are not correlated.
The same formulas may be used when data_are correlated except that the
estimates of the standard error of the mean, s/ s/r_z, must be modified as discussed
in Sections 4.5 and 4.6. The confidence intervals given in subsections 11.12.1
and 11.12.2 require that estimates of serial and/or spatial correlation coefficients
be obtained from the data. Since these estimates will not be accurate if they
are based on only a few data, the formulas in this section should not be used
unless n is large, preferably n = 50.

11.12.1 Single Station

Consider first the case of time (serial) correlation but no spatial correlation.
Suppose data are collected at equal intervals sequentially in time at a monitoring
station, and we wish to compute a confidence interval for the true mean over
that period of time at that station. The two-sided and one-sided confidence
intervals for u given by Egs. 11.5-11.10 can be used for this purpose if
s/</n in these equations is replaced by

1 n—1 172
s[— <1 +2 2 ﬁ,)] 11.18
n I=1
where s is the square root of Eq. 4.4 and the j, are the estimated serial
correlation coefficients of lag / = 1, 2, . . ., n — 1 computed by Eq. 4.22.

For example, by Eq. 11.5 the approximate 100(1 — «)% confidence interval
for the true mean for the station is

1 n—1 12
X + tl_a,z,,,_ls[; <1 +2 2 ﬁ,ﬂ 11.19

=1
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If the serial correlation coefficients with lags greater than, say, I = m are all
zero, then Eq. 11.18 is the same as given by Albers (1978b, Eq. 2.4), who
developed a ¢ test for dependent data.

A somewhat more accurate confidence interval may be obtained by using

1 2 n—1 172
s{; [1 + IZ (n - l)ﬁ,B 11.20
=1

instead of Eq. 11.18. We have encountered Eqs. 11.18 and 11.20 before in
connection with determining the number of measurements needed for estimating
a mean when data are correlated; see Eqgs. 4.18 and 4.21.

EXAMPLE 11.5

In Exercise 4.3 there was serial correlation between the n = 100
measurements taken along a line in space. The serial correlations
forlags I =1, 2,. . ., 14 were nonzero and summed to /¢, 5,
= 4.612. Also, the sample mean and standard deviation were x =
18,680 and s = 4030. Therefore, by Eqgs. 11.5 and 11.18 a 90%
confidence interval about the true mean along the transect is given

by
- [1 + 2(4.612)]”2
T Ip.95,998 100

or 18,680 + 1.661(4030) (0.3197) or 16,500 and 20,800.

11.12.2 Regional Means

Suppose n observations over time are collected at each of n, monitoring stations.
The arithmetic mean of the observations at the ith station is
n

s,

Ei:._
nji=1

ij

Then an estimate of the true regional mean is
_ 1 ns n 1 ns
X=—Z ZX=— _i

If there is no correlation between stations, a confidence interval about the true

regional mean is
12

ns
S o SR —1[; 2 ® - E)ZJ 11.21
g, — 1) i=1
Equation 11.21 is valid even if there is serial correlation between the measure-
ments at each station. The quantity under the square-root sign in Eq. 11.21 is
the standard error given previously in Section 4.6. Note that this estimator does
not use individual data points at the stations but only the station means.

If there is a spatial correlation p. between n, stations but no time correlation
between the n measurements at each station, the confidence interval about the
true regional mean is (by Eq. 4.14)

MJUZ 11.22

X i tl —al/2,nns — 15
nng
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where s is approximated by the square root of nns*(x), where s(¥) is Eq. 4.27.
Example 4.6 shows how to obtain j,.

Finally, if there are both spatial and temporal correlation, the confidence
interval is (from Eq. 4.23)

n—1 12
x+ tl—a(/z,nn,—ls[L <1 + 2 2 (n - l)ﬁ/) 1 + png — 1))] 11.23
nn ni=i
where s is obtained as above for Eq. 11.22. Equations 11.18, 11.19, and 11.20,
are approximate, since s in these equations is computed by Eq. 4.4, which is
appropriate only when the data are independent. An alternative estimator for s
is suggested in Exercise 4.4.

11.13 RANK VON NEUMANN TEST
FOR SERIAL CORRELATION

Sections 4.5.2 and 11.12.1 gave methods for estimating Var(x) and for deciding
how many measurements to take to compute X when the data are collected
sequentially over time and are serially correlated. This section discusses the
rank von Neumann test (Bartels, 1982), which tests the null hypothesis H, that
p1 = O versus the alternative hypothesis that p, > 0, where p, is the lag 1
serial correlation coefficient. If this test is nonsignificant (null hypothesis not
rejected) and at least 25 measurements are used in the test, we may tentatively
conclude that the formulas for Var(¥) given in Sections 4.5.2 and 11.12.1 may
not be needed; the simpler formula s%/n is sufficient. Additional tests can be
carried out to help decide whether serial correlations of lags greater than 1 are
equal to zero by the method given by Box and Jenkins (1976, p. 35).

The von Neumann test will also detect trends and/or cycles in a sequence
of data. Hence, if the test statistic gives a significant result, it could be due to
trends, cycles, and/or autocorrelation. Also, for the test to be meaningful, the
data should be collected at equal or approximately equal intervals.

Assume there are no trends or cycles present. Then the null hypothesis being
tested is that p; = 0. The alternative hypothesis of most interest is that p, >

\O, since positive correlation is the usual case with pollution data. Let x,, x,,
. » X, be a sequence (time series) of n observations obtained over time at a
monitoring station. Then do the following:

1. Assign the rank of 1 to the smallest observation, the rank of 2 to the next

smallest, . . . , and the rank of n to the largest observation. Let R, be the
rank of x;, R, be the rank of x,, . . . , and R, be the rank of x,.
2. Compute the rank von Neumann statistic, R,, as follows:
n—1
12
R,=———— 2 (R — R, )
v n(nz_l) i=1( { 1+1)
where: R; = rank of the ith observation in the sequence,
R; 1, = rank of the (i + 1)st observation in the sequence (the

following observation).

3. If 10 = n =< 100, reject the null hypothesis that p, = 0 at the « significance
level and conclude that p; > O if R, is less than R, ,, the o quantile for
R, given in Table A5 for the appropriate n. This table gives quantiles for
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10 = n =< 100. Tests for serial correlation are not recommended if n <
10, but such tests are possible with Table 1 in Bartels (1982).
4. If n > 100, compute

ViR, - 2)
- —

and reject H, and accept that p, > 0 if Zg is negative and |Zy| > Z,__,
where Z, _, is obtained from Table Al.

The rank von Neumann test is not exact if some measurements are tied (have
the same magnitude). If the number of tied values is small, one may assign to
each observation in a tied set the midrank, that is, the average of the ranks
that would be assigned to the set. When this procedure is used, the critical
values in the table ‘‘may provide a reasonable approximation when the number
of ties is small” (Bartels, 1982, p- 41).

EXAMPLE 11.6

Hakonson and White (1979) conducted a field study in which soil
samples were collected on a grid at 1-m intervals both before and
after the site was rototilled. Cesium concentrations (**'Cs) were
obtained for each sample. The authors have kindly provided the data
for our use. We shall test at the « = 0.05 significance level that
there is no serial correlation between Cs concentrations along grid
lines. The 13 "*’Cs concentrations and their ranks obtained in order
along one line of the rectangular grid before rototilling are

datum, rank
2.20 10
2.74 13
042 4
0.63 6
0.82 7
0.86 8
0.31 2
23312
0505
222 11
1.109
0.32 3
0011

Since n(n? ~ 1)/12 = 13(168)/12 = 182, the rank von Neumann

statistic is
[(10 - 13 + (13-4 + (4 — 6 + . ..
2 361
+ @3 1)]/182—182—1.98

From Table A5 the critical value at the & = 0.05 level is 1.14.
Since 1.98 > 1.14, we cannot reject the null hypothesis that p, = 0.

When testing for serial correlations over space, it is necessary to
test along lines in several directions, for example, north-south, east-
west, and intermediate angles, since correlations can exist in some
directions but not in others.

lan 3

iy
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11.14 DATA TRANSFORMATIONS

Pollution data are frequently transformed before statistical or graphical analyses.
This section briefly discusses when it is desirable to transform and some of the
pitfalls that can arise. Our interest is in nonlinear transformations—that is, those
that change the scale of measurement. We pay particular attention to the
logarithmic transformation, since it is useful for pollution data and is used in
later chapters of this book, primarily Chapters 13 and 14.

11.14.1 Reasons for Using
Transformations

Here are some reasons for using nonlinear transformations.

1. To obtain a more accurate and meaningful graphical display of the data

2. To obtain a straight-line relationship between two variables

3. To better fulfill the assumptions underlying statistical tests and procedures,
such as normality, additive statistical models, and equal spreads (variance)
in different data sets

4. To efficiently estimate quantities such as the mean and variance of a lognormal
distribution, as illustrated in Chapters 13 and 14

As an example of items 1 and 2, suppose we wish to study the relationship
between two pollutants. We measure both on the same set of n samples and
plot the untransformed data on a scatter plot. It would not be unusual to obtain
several data pairs with very high concentrations relative to the bulk of the data.
In this case the low concentrations pairs will be clumped close to zero, and the
high concentrations will appear as isolated values far from zero. If a straight
line is fit to these data, the fit will be determined mainly by the position of the
lower clump and the few high values. That is, the full set of n data pairs will
not be efficiently used to examine the relationship between the two variables.
If the logarithms of the data are plotted, the points will be more evenly spread
dut over the coordinate scales and the entire n pairs effectively used and
displayed.

Since pollution data tend to be skewed, the scatter plot of log-transformed
data will tend to be Minear. This behavior is fortunate because statistical methods
for linear relationships are relatively simple. For example, as pointed out by
Hoaglin, Mosteller, and Tukey (1983), departures from a linear fit are more
easily detected, and interpolation and extrapolation are easier than if the
relationship is not linear.

Concemning item 3, most statistical methods books, such as Snedecor and
Cochran (1980, pp. 282-297), discuss data transformations that are useful before
performing analysis of variance (AOV) computations. AOV tests of hypotheses
assume that the effects of different factors are additive and that the residual
errors have the same variance and are normally distributed. Cochran (1947),
Scheffé (1959), and Glass, Peckham, and Sanders (1972) discuss the effects on
AOV procedures when these assumptions are not fulfilled. Since pollutant data
are often approximately lognormal, it is common practice to use a logarithmic
transformation before conducting an AOV. The desired characteristics of
additivity, constant variance, and normality are frequently achieved at least
approximately when this is done. For the same reason, the logarithmic
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transformation is frequently used before doing ¢ tests to look for significant
differences between two means.

11.14.2 Potential Problems with
Transformations

Following are three problems that may arise when using a nonlinear transfor-
mation.

1. Estimating quantities such as means, variances, confidence limits, and
regression coefficients in the transformed scale typically leads to biased
estimates when they are transformed back into the original scale.

2. It may be difficult to understand or apply results of statistical analyses
expressed in the transformed scale.

3. More calculations are required.

We may illustrate the bias referred to in item 1 by considering the lognormal
distribution. Let x represent an untransformed lognormal datum, and let y =
In x. An unbiased estimator of the mean of the log-transformed distribution is
y, the arithmetic mean of the y’s. But if y is transformed back to the original
scale by computing exp(y), the geometric mean, we do not obtain an unbiased
estimate of the mean of the untransformed (lognormal) distribution. A similar
problem arises when estimating confidence limits for the mean of a lognormal
distribution. Chapter 13 gives unbiased methods for estimating lognormal means
and confidence limits. Heien (1968) and Agterberg (1974, p. 299) discuss similar
bias problems when conducting linear regression and trend surface analysis on
transformed data.

Koch and Link (1980, Vol. 1, p. 233) suggest that transformations may be
useful ‘‘when the conclusions based on the transformed scale can be understood,
when biased estimates are acceptable, or when the amount of bias can be
estimated and removed because the details of the distribution are known.”’
Hoaglin, Mosteller, and Tukey (1983) point out that we lose some of our
intuitive understanding of data in a transformed scale, and that a judgment must
be made as to when the benefits justify the ‘‘costs.”” They indicate that a
transformation is likely to be useful only when the ratio of the largest datum
to the smallest datum in a data set is greater than about 20.

11.15 SUMMARY

The normal distribution plays an important role in the analyses of pollution data
even though many environmental data sets are usually not normally distributed.
This importance occurs because of the close relationship with the lognormal
distribution and because the sample mean, X, is normally distributed if n is
sufficiently large.

This chapter provides a set of tools for characterizing normal distributions.
Methods for estimating the mean, variance, proportions, and quantiles and for
putting confidence intervals on proportions, quantiles, and the mean are given.
Nonparametric (distribution-free) methods that may be used when the distribution
is nonnormal are provided. Formulas are given for computing approximate
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confidence limits about x when data are correlated over time and/or space. The
last section discusses the benefits and potential pitfalls of nonlinear data
transformations.

EXERCISES

11.1 What percent of the standard normal distribution falls (a) above p + lo,
(b) between . — 20 and p + la?

11.2 Listed here are n = 10 carbon monoxide data from Table 11.1:

602 579 2.03 462 6.78
843 6.02 399 522 747

Assume these data were drawn at random from a normal distribution.
Estimate (a) the mean, g, (b) the variance, o2, and (c) the 90th percentile
of the normal distribution from which these data are assumed drawn.
Also, estimate the 90th percentile by the nonparametric method. Can the
95th percentile be estimated by the nonparametric method when only 10
samples are collected?

11.3 Estimate the upper 90% confidence limit for the 90th percentile of the
(assumed) normal distribution from which the data in Exercise 11.2 were
drawn.

11.4 Using the data in Exercise 11.2, estimate the proportion of the assumed
normal distribution that exceeds the value 4.0.

11.5 In Example 11.3 estimate (a) a two-sided 99% confidence interval for g,
(b) a one-sided upper 80% confidence limit for p, and (c) a one-sided
lower 95% confidence limit for u. - '

11.6 Use the carbon monoxide data in Table 11.1 to estimate upper and lower
80% confidence limits on the 60th percentile (0.60 quantile) of the
population from which these data were drawn.

11.7 Use the data in Table 11.1 to estimate the proportion of the population
that exceeds 20 g/mi. Estimate the lower and upper 95% confidence
limits for the true proportion greater than 20 g/mi.

11.8 In Example 11.5 we found that when serial correlation was present, the
90% confidence interval for the true mean was from 16,540 to 20,820.
Recompute the 90% confidence interval using the same data but without
taking the serial correlation into account.

ANSWERS

11.1 (a) 15.87%, (b) 81.85%.

112 (a) ¥ = 5.64, (b) s> = 3.30, (c) the 90th percentile computed by Eq.
11.1 is £590 = 5.64 + 1.282(1.817) = 7.97, and by the nonparametric
method, is 90% of the way between the 9th and 10th largest of the 10
data, or 8.33. No.
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From Eq. 11.2, UL g5(x g0) = 5.64 + 2.066(1.817) = 9.39.

4 — 5.64
hao =1 —dl——— ) =1 ~ ¢(—-0.9026) = 0.817
DPao =1 ¢< 1817 > 1 ~ ¢(—0.9026)

(@ From Eq. 11.5, 0.0372 + 2.861(0.0211)/+/20, or 0.0237 and
0.0507.

(b) From Eq. 11.6, 0.0372 + 0.861(0.0211)/\/2—0 = 0.0413.

(¢) From Eq. 11.7, 0.0372 - 1.729(0.0211)/\/2_0 = 0.0290.

Using Eqs. 11.11 and 11.12 gives
(0, w) = 0.647) + 1.282[476(0.6)(0.4)]”2

Therefore, I = 23.94, u = 32.46, so lower limit = 6.01, upper limit
= 8.51.

P = & = 0.0435. By Eq. 11.15,
Lower 95% Limit: 431.5 {1.5 + 3‘2ﬁ — 1.96[1.5 _ (_1%)2 . 3—?}'/2}
= 0.0076 ' .'f
By Egq. 11.16, -
Upper 95% Limit:  —— {2.5 L8 1.96[2.5 _ ey + ﬁ]m}
49.8 2 46 4

= 0.16

18,680 + 1.661(4030)/10, or 18,011 to 19,349. This-interval is about
one-third the length of the interval computed in Example 11.5.

S /‘1



12 Skewed Distributions
and Goodness-of-Fit
Jests

In many cases pollution data sets are skewed (asymmetrical) so that the symmetric
normal distribution discussed in Chapter 11 is not a suitable model for estimating
quantiles, proportions, or means. In that case the nonparametric procedures
given in Chapter 11 may be used. Another approach is to find a distribution
model that adequately fits the skewed data set. Then statistical methods for that
distribution can be used. This chapter describes the lognormal distribution and
several methods for testing whether a data set is likely to have arisen from a
normal distribution or a lognormal distribution.

12.1 LOGNORMAL DISTRIBUTION

The lognormal distribution is used to model many kinds of environmental
contaminant data: for example, air quality data (see the reviews by Mage, 1981;
Georgopoulos and Seinfeld, 1982), radionuclide data sets (Pinder and Smith,
1975; McLendon, 1975; and Horton et al., 1980), trace metals in fish (Giesy
and Weiner, 1977), and strontium-90 and other fission-product concentrations
in human tissues (Schubert, Brodsky, and Tyler, 1967).

Two-, three-, and four-parameter lognormal distributions can be defined. The
two-parameter lognormal density function is given by

1 1
@) = ex [—-—— nx — )2] x>0, —o< < o, g, >0
f xay\/2_1r p 205(1 Ky, Ky y

12.1

where p, and ai, the two parameters of the distribution, are the true mean and
variance, respectively, of the transformed random variable ¥ = In X. Some
authors refer to the true geometric mean [exp (u,)] and the true geometric
standard deviation [exp (o,)] as the parameters of the distribution. We shall use
A(py, of) to denote a two-parameter lognormal distribution with parameters p,
and 05.

Some two-parameter lognormal distributions are shown in Figure 12.1. The
distribution is described in detail by Aitchison and Brown (1969) and Johnson
and Kotz (1970a), who give several methods for estimating the parameters pu,
and o2. Mage and Ott (1984) evaluate several methods and demonstrate that
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Figure 12.1 Lognormal distributions for different values of the parameters u,

and o7, the mean and variance, respectively, of
Aitchison and Brown, 1969, Figs. 2.2 and 2.3).

the log-transformed variate (after
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the method of maximum likelihood is preferred. This method leads to the
estimators

M=
N

(yi = ¥

S [

y; and s§ =
1

S [ =

5;:

i=1

i

where y; = In x;, Maximum likelihood estimation from a theoretical viewpoint
is discussed in theoretical statistics books, such as Lindgren (1976). Georgopoulos
and Seinfeld (1982) illustrate its application to statistical distributions of air
pollution concentrations.

The three-parameter lognormal density function is given by

_ 1 _ L - P

x>7 —o<p <o 0,>0 —-0o<7<oo 122

Comparing Eqs. 12.1 and 12.2, we see that x — 7 has a two-parameter
lognormal distribution. The third parameter, 7, which may be positive or
negative, simply shifts the two-parameter distribution to the right or left by the
amount 7 without changing its shape.

Figure 12.2 shows a two-parameter A(l, 1) distribution and the three-
parameter lognormal distributions that result when 7 is shifted from zero to

1

0.5
04 +
03 1+
02+
0.1 +

0

T=-1 A(=0.5,1,1)

RELATIVE FREQUENCY

05 +
04 +
03+
02 + 3
01+

A(0.5,1,1)

CONCENTRATION

Figure 12.2 The two-parameter lognormal distribution A(1, 1) and the three-
parameter lognormal distributions that result when r = —0.5 and 0.5 (after
Gilbert and Kinnison, 1981, Fig. 1).
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—0.5 or to 0.5. The population mean ¢ and variance o2 of the three-parameter
lognormal distribution are defined in Table 12.1 along with other characteristics
of the distribution. Setting 7 = 0 in Table 12.1 gives the appropriate expressions
for the two-parameter lognormal distribution.

Maximum likelihood estimates of the parameters Ky aﬁ, and 7 may be
obtained by the Nelder-Mead simplex procedure (Olsson and Nelson, 1975),
as discussed by Holland and Fitz-Simons (1982). One of the conditional
maximum likelihood estimates discussed by Cohen and Whitten (1981) could
also be used. If the value for 7 is known a priori, then u, and of are estimated
by computing 3 and s? from the data y; = In o — 7).

Since pollution concentrations cannot be negative, a three-parameter lognormal
with negative 7 may seem on first thought to be irrelevant. However, negative
measurements can occur due to measurement errors when true concentrations
are very near zero. For example, correcting environmental radionuclide mea-
surements by subtracting naturally occurring (background) radiation can give
negative data when concentrations are only slightly above background and large
measurement errors are present.

The four-parameter lognormal is bounded by a lower bound and an upper
bound on the possible values of the variable. Also, both right and left-skewed
distribution shapes are possible. This distribution is discussed by Aitchison and
Brown (1969) and Mage (1980) and has been applied to air quality data by
Mage (1975).

12.2 WEIBULL, GAMMA, AND BETA
DISTRIBUTIONS

The Weibull, gamma, and beta distributions are sometimes used to model
environmental pollution data. Their density functions are given in Table 12.2
along with the two- and three-parameter lognormal density functions. Plots
showing the many shapes these distributions can take are given by Hahn and
- Shapiro (1967). Georgopoulos and Seinfeld (1982) discuss the application of
these distributions to air pollution concentrations.

The parameters y, «, and 8 of the three-parameter Weibull distribution
determine the location, shape, and scale, respectively, of the distribution. The
distribution can take on a wide variety of shapes and can be used to model
both right- and left-skewed data sets.

The three parameters can be estimated by several methods, including Weibull
probability paper (illustrated by King, 1971 and Hahn and Shapiro, 1967) or
the maximum likelihood method, discussed, for example, by Johnson and Kotz
(1970a, p. 255) and Holland and Fitz-Simons (1982).

Pinder and Smith (1975) found that the Weibull distribution fit some
radionuclide data sets better than the two-parameter lognormal. Apt (1976)
recommends the Weibull distribution as being well suited for describing spatial
and temporal distributions of atmospheric radioactivity. He suggests that the
estimate of y would be a reasonably good environmental ““background’’ or
‘‘nonimpacted’’ value, since 7y is a threshold or minimum-value parameter.
Johnson (1979) reported that ambient ozone data appeared to be better fit by
the two-parameter Weibull distribution (i.e., when y = 0) than by the two-
parameter lognormal.
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Table 12.1

Some Characteristics

of Normal and Lognormal Populations

Definitions of Distribution

x Is from a Normal
Distribution with
Parameters p and o

x Is from a 3-Parameter Lognormal Distribution® with
Parameters p,, o2, and 7

N
Ky = N7! i=Z| In(x; — 7),

N
o =N % e -1 -l

Parameters®
Mean M po= exply, + 042) + 1
Geometric mean (GM) — pe = exp(p,) + 7
Median I pe = exp(u,) + 7
Mode u explp, — 0) + 7
Standard deviation ¢ o = JexpQu, + od)lexp(c?) ~ 1]
Geometric standard deviation — g, = exp(s,) -,
Coefficient of variation alp 7= ‘/&F@——l [1 + m]
Coefficient of skewness® 0 7 + 3,
Coefficient of kurtosis® 0 7t + 605 + 1597 + 1693

Central 68% of the distribution
Central 95% of the distribution

p—-—ctou+o
u — 1.960 to u + 1.960

pglo, t0 e X 0,
1.96

Source: After Miesch, 1976, Table 1.
“N = number of population units in the. target population.
x; = datum for the ith population unit.
If 7 = 0, the three-parameter lognormal reduces to the two-parameter. Note that the expressions for u, p,, 7 and the mode
simplify when 7 = 0, that is, when the variable has the two-parameter lognormal distribution.

bVarious notations have been used to denote the two parameters and the mean and variance of the lognormal distribution.
Care must be taken to avoid confusion. For example, Aitchison and Brown (1969) use o and 82 instead of our p and ¢°
for the mean and variance of the untransformed (lognormal) variate. They use p and o® instead of our gy and oﬁ for the
mean and variance of the log-transformed (normal) variate.

‘m = Vexp(d})— 1

pg/a;,'% to p, X o,
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Table 12.2 Probability Density Functions Sometimes Used to Model
Environmental Pollutant Concentrations

Distribution Probability Density Function (pdf)
T ter 1 e L [ nx — u ’)2]
wo-parameter lognorma
P € xo, V27 P 2q2

x>0, —o<p, < oo, g, >0

Three-parameter lognormal® ! exp{ o — 7) — “y]?
&~ 10, \2r 242
x>71 —0o <7< 00, —oo<#y<oo, gy>0
Three-parameter Weibull® % ( ; 7>a_l exp[—(x ; >H]
—® < y< o x>y, >0a>0
b 1 - \"! x — v
Three-parameter gamma M <_13—> exP[—(Tﬂ

—o < y<w x>y, a>0,8>0

Na + 8
T(e) TB)

¥<x<60 a>0 >0

Four-parameter beta® e R o 2 R (A5

“u, and o2 are defined in Table 12.1.
®Reduces to two-parameter distributions when v = 0.
“Reduces to three-parameter beta distribution when vy =0.

The parameters v, «, and 8 of the three-parameter gamma distribution are
also location, shape, and scale parameters. The density function (given in Table
12.2) contains the gamma function I'(a), which is defined to be

') = So x* " Vexp (—x) dx

where I'(e) = (@ — 1)! when « is a positive integer. The maximum likelihood
estimates of the three parameters may be obtained as described by Johnson and
Kotz (1970a, p. 185). Preliminary and easily computed estimates of the parameters
can be obtained by using Eqs. 39.1, 39.2, and 39.3 in Johnson and Kotz
(1970a, p. 186). However, these estimators are not as accurate as the maximum
likelihood estimators.

The density function of the beta distribution given in Table 12.2 has four
parameters: «, @3, 6, and . The variable X is bounded below by 4 and above
by 6, a useful feature because such bounds may occur for some types of
environmental data. Methods for estimating the parameters are given by Johnson
and Kotz (19700, pp. 41-46).

12.3 GOODNESS-OF-FIT TESTS

The previous section presented several density functions that might be used
to model environmental contaminant data. The data analyst is faced with deciding
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on the basis of data which of these probability distributions to use. Common
ways to approach this problem are to construct a histogram, stem-and-leaf
display, or normal and lognormal probability plots of the data. (See Section
13.1.3 for more on lognormal probability plots.) Histograms and stem-and-leaf
displays (the latter are discussed and illustrated by Hoaglin, Mosteller, and
Tukey, 1983) will give a visual impression of the shape of the data set, but
they are not adequate tools for discrimination. If the normal probability plot is
a straight line, it is evidence of an underlying normal distribution. A straight
line on the lognormal probability plot suggests the lognormal distribution is a
better model. Coefficients of skewness and kurtosis may also be computed from
the n data values and used to test for normality (Bowman and Shenton, 1975).
Most statistical packages of computer programs contain a code that will plot
histograms and compute the coefficients of skewness or kurtosis, and some
{e.g., Minitab; see Ryan, Joiner, and Ryan, 1982) will construct probability
plots. :

This section presents several statistical tests that test the null hypothesis that
the distribution is in some specified form. We begin with the W test developed
by Shapiro and Wilk (1965), one of the most powerful tests available for
detecting departures from a hypothesized normal or lognormal density function.
Shapiro and Wilk provided tables that allow the W test to be made if n < 50.
This limitation on n was overcome somewhat by D’Agostino (1971), who
developed a related test for when n is between 50 and 1000. D’ Agostino’s test
and the W test are discussed and illustrated in this section. Royston (1982a)
developed a computational procedure for the W test for n as large as 2000. His
procedure is well suited for computation on a computer, and computer codes
are available (Royston, 1982a, 1982b, 1982¢, 1983; Koniger, 1983).

Tests closely related to the W test with similar performance capabilities are
those by Shapiro and Francia (1972) and Filliben (1975). Looney and Gulledge
(1985) use the correlation coefficient applied to a probability plot to test for
normality or lognormality. A table of critical values needed for the test is
provided for n between 3 and 100. Their test is simple, and its performance is
roughly the same as that of the W test.

The nonparametric Kolmogorov-Smimov (KS) test and the related Lilliefors
test may also be used to evaluate the fit of a hypothesized distribution. These
tests, described by Conover (1980) are considered to be more powerful than
the chi-square goodness-of-fit tests. The KS test is not valid if the parameters
of the hypothesized distribution are estimated from the data set. The Lilliefors
test (Lilliefors, 1967, 1969) was developed to surmount this problem when the
hypothesized distribution is the normal or lognormal. Iman (1982) developed
graphs that simplify the Lilliefors test procedure. Kurtz and Fields (1983a,
1983b) developed a computer code for computing the KS test. One can also
use an IMSL (1982) subroutine as well as SAS (1982, 1985) software, but the
Kurtz and Fields’ code is valid for smaller » (n > 3).

12.3.1 The W Test

The W test developed by Shapiro and Wilk (1965) is an effective method for
testing whether a data set has been drawn from an underlying normal distribution.
Furthermore, by conducting the test on the logarithms of the data, it is an
equally effective way of evaluating the hypothesis of a lognormal distribution.
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We suppose that n < 50 data, x;, x,, . . ., X,, have been drawn at random
from some population. The null hypothesis to be tested is

Hy: The population has a normal distribution
versus
H 4: The population does not have a normal distribution

If Hy is rejected, then H, is accepted. If Hy is not rejected, the data set is
consistent with the H, distribution, although a retest using additional data could

result in rejecting Hj,. i

The W test of this H, is conducted as follows:

1. Compute the denominator d of the W test statistic, using the n data.

n

n n 2
d=_§(x,-—)_c)2=2x,?—l<2x,-> 12.3

i=] n

i=1
2. Order the n data from smallest to largest to obtain the sample order statistics

x“] = xm = - - = x[,,]. L\_
3. Compute k, where ]

k= g if n is even ;
. "
== 2 if n is odd
4. Tumn to Table A6 and for the observed n find the coefficients a;, a,,
c e ey Q.
5. Then compute
14 2
W= ‘_1 [Zl a,-(x[,,_,-+ 1]~ .xh])] 12.4

6. Reject Hy at the « significance level if W is less than the quantile given in
Table A7.

To test the null hypothesis

Hy: The population has a lognormal distribution 7
versus

H,: The population does not have a lognormal distribution

the preceding procedure is used on the logarithms of the data. That is, we
compute d (Eq. 12.3), using y;, y,, . . ., Yn» Where y; = In x,, and we use
the sample order statistics of the logarithms Yy = Yoy =+ ¢ ¢ =y, in place
of the xy; in Eq. 12.4.

EXAMPLE 12.1

Lee and Krutchkoff (1980) list mercury concentrations (ppm) in 115
samples of swordfish. We have selected 10 of these data at random
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Table 12.3 Mercury Concentrations (ppm) in Ten Samples of Swordfish

X; 0.13 0.45 0.60 0.76 1.05
¥y, = Inx —2.0402 —0.7985 —0.5108 ~0.2744 0.04879
X; 1.12 1.20 1.37 1.69 2.06
yi=Inx 0.1133 0.1823 0.3148 0.5247 0.7227

Source: After Lee and Krutchkoff, 1980, Table 1.

to illustrate the W test. We test the null hypothesis
Hy: The distribution is lognormal

versus
H,: The distribution is not lognormal

and we test at the « = 0.05 level. The natural logarithms of the
10 randomly selected values are listed from smallest to largest in
Table 12.3.

The denominator of the W statistic computed with the 10 y; data
is d = 5.7865 (by Eq. 12.3). Since n = 10, we have k = 5. Using
the 5 coefficients a,, a,, . . . , as from Table A6 for n = 10, we
use Eq. 12.4 to obtain

w1
5.7865

+ 0.3291 [0.5247 — (—0.7985)]

+ 0.2141 [0.3148 ~ (—0.5108)]

+ 0.1224 [0.1823 — (—0.2744)]

+ 0.0399 [0.1133 — 0.04879]}2
= 0.8798

From Table A7 we find this calculated W is greater than the 0.05
_quantile 0.842. Hence, we cannot reject H,, and we conclude that,
based on the n = 10 data, the lognormal distribution may be a
reasonable approximation to the true unknown distribution. Of course,
if n were much greater than 10, the W test might lead to the opposite
conclusion, since the additional data would provide more information
about the shape of the target population distribution.

{0.5739 [0.7227 — (—2.0402)]

An alternative method of using W to test Hy is to convert W to a standard
normal variable and to use Table Al to decide whether to reject Hy. This
approach is illustrated by Hahn and Shapiro (1967) and by Conover (1980).
One attractive feature of this approach is that it can be used to combine several
independent W tests into one overall test of normality (or lognormality). This
testing procedure is illustrated by Conover (1980, p. 365).

12.3.2 D’Agostino’s Test

D’Agostino (1971) developed the D statistic to test the null hypothesis of
normality or lognormality when n = 50. He shows that his test compares
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favorably with other tests in its ability to reject H, when H, is actually false.
This test complements the W test, since tables needed for the latter test are
limited to n =< 50.

Suppose we wish to test the null hypothesis that the underlying distribution
is normal. Then the D test is conducted as follows:

1. Draw a random sample x;, x,, . . . , x, of size n = 50 from the population
of interest.

2. Order the n data from smallest to largest to obtain the sample order statistics
Xy S X = 00 < Xy

3. Compute the statistic

2 i = Mn + Djxy,

D =
n2s

where
1 n 1/2
5 = [— 2 (- 3)2]
ni=1

4. Transform D to the statistic ¥ by computing

_ D — 0.28209479
0.02998598/vn

[One should aim for five-place numerical accuracy in computing D (step 3),
since the denominator of Y is so small.] If n is large and the data are drawn
from a normal distribution, then the expected value of Y is zero. For
nonnormal distributions Y will tend to be either less than or greater than
zero, depending on the particular distribution. This fact necessitates a two-
tailed test (step 5).

5. Reject at the a significance level the null hypothesis that the n data were
drawn from a normal distribution if Y is less than the /2 quantile or greater
than the I — /2 quantile of the distribution of Y. These quantiles are given
in Table A8 for selected values of n between 50 and 1000 (from D’Agostino,
1971).

The Y statistic can also be used to test the null hypothesis of a lognormal
population by using y; = In x; in place of x; in the calculations.

EXAMPLE 12.2

We test at the o = 0.05 signiﬁcance level that the n = 115 mercury
swordfish concentrations in Table 1 of Lee and Krutchkoff (1980)
have been drawn from a normal distribution. That is, we test

H,: The distribution is normal
versus
H,: The distribution is not normal

and we assume that the data were drawn at random from the target
population.
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The value of s in the denominator of D is computed to be

1 115 12
5= [IE > @ - ;)2] = 0.4978213
i=1

Hence the denominator is
(115)%(0.4978213) = 6583.687
Since (n + 1)/2 = 116/2 = 58, the numerator of D is
(1 = 58)x;; + (2 — S8)xpp + - - - + (114
= 58)x(114) + (115 — 58)x;yy5, = 1833.3
Therefore

1833.3

= — = = (.278460
6583.687 _ 021846099

Hence

Yy = 0.27846099 — 0.28209479

= —1.30
0.02998598/V115

Table A8 contains no quantiles of the Y statistic for n = 115.
Hence, we must interpolate. If n = 100, the a/2 = 0.05/2 = 0.025
quantile is —2.552, and the 1 — 0.025 = 0.975 quantile is 1.303.
If n = 150, Table A8 gives —2.452 and 1.423 for these quantiles.
Linear interpolation between the 0.025 quantiles for n = 100 and
150 gives —2.522 as the approximate 0.025 quantile for n = 115.
The 0.975 quantile when n = 115 is similarly approximated to be
1.339. Since Y = —1.30 is not less than —2.522 nor greater than
1.339, the null hypothesis of a normal distribution cannot be rejected.
Hence, we tentatively accept the hypothesis that the population from
which the data were obtained can be approximated by a normal
distribution.

12.4 SUMMARY

This chapter introduced the most important frequency distributions used to model
environmental data sets. The lognormal distribution is frequently used and will
be discussed in more detail in Chapter 13.

Two statistical procedures for testing that a data set has been drawn (at
random) from a hypothesized normal or lognormal distribution have also been
described and illustrated. One of these, the W test, is recommended as a
powerful general-purpose test for normality or lognormality when n < 50. The
other test, by D’Agostino (1971), is appropriate for n = 50. Two easily used
graphical tests are the Kolmogorov-Smirnov (KS) and Lilliefors tests discussed
by Conover (1980). If the hypothesized distribution is normal or lognormal, the
Lilliefors test is preferred to the KS test because the parameters of the distribution
need not be known a priori. The simple correlation coefficient procedure
discussed by Looney and Gulledge (1985) is recommended as a test for normal
or lognormal distributions if n < 100.
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EXERCISES

12.1

12.2

Use the data in Table 12.3 and the W test to test at the a = 0.05 level
the null hypothesis that mercury concentrations in swordfish are normally
distributed. Compare your conclusion to that in Example 12.1, where we
tested the null hypothesis that these data are from a lognormal distribution.
Does the normal or lognormal seem to be the better choice?

The following mercury concentrations were drawn at random from the
list of 115 values given by.Lee and Krutchkoff (1980):

1.00 1.08 139 1.89 0.83
0.8 013 007 126 09

Combine these data with those in Table 12.3 and use the W test to test
at the @ = 0.05 level that the sampled population is normal. Does the
test result differ from that in Exercise 12.1?

ANSWERS

12.1

12.2

By Eq. 12.3, d = 3.0520. Using the 5 coefficients from Table A6 and
Eq. 12.4, we obtain

W=——0. .06 — 0. 3291 (1.69 — 0.4
3.0520[05739(206 0.13) + 0.3291 (1.69 — 0.45)

+ 0.2141 (1.37 — 0.60) + 0.1224 (1.20 — 0.76)
+ 0.0399 (1.12 — 1.05)?

3.01792
= 30520 0%

The critical value from Table A7 is 0.842. Since W > 0.842, we cannot
reject the null hypothesis of a normal distribution. In Example 12.1 we
could not reject the null hypothesis that jthe population is lognormal.
Hence, the data are not sufficient to distihguish between normality and
lognormality. 3

n = 20,d = 5.757295.

1
W=—-———10. .06 — 0. 3211 (1.89 — 0.13
5.757295 [0.4734 (2.06 — 0.07) + 0.3211 ( )

+ 0.2565 (1.69 — 0.13) + 0.2085 (1.39 — 0.45)

+ 0.1686 (1.37 — 0.60) + 0.1334 (1.26 — 0.76)

+ 0.1013 (1.20 —~ 0.83) + 0.0711 (1.12 — 0.89)

+ 0.0422 (1.08 — 0.92) + 0.0140 (1.05 — 1.00))?
= 0.968

The critical value from Table A7 is 0.905. Since W > 0.905, we cannot
reject the null hypothesis of normality, the same test result as in Exercise
12.1.




1 3 Characterizing
Lognormal Populations

The lognormal distribution is the most commonly used probability density model
for environmental contaminant data. Therefore this chapter considers several
estimation procedures for this distribution. More specifically, the chapter

Gives optimal methods for estimating the mean and median

Shows how to compute confidence limits about the mean and median

Shows how to determine the number n of data needed to estimate the
median

Shows how to.estimate quantiles

Discusses the geometric mean and some problems with its use in evaluating
compliance with environmental pollution limits.

13.1 ESTIMATING THE MEAN
AND VARIANCE

We begin by giving four methods that can be used to estimate the mean p and
variance ¢ of a lognormal distribution: (1) the sample mean %, (2) the minimum
variance unbiased (MVU) estimator fi,, (3) an easily computed estimator i, and
(4) the probability-plotting estimator. Which of these is used in practice depends
on circumstances, as discussed in what follows.

The arithmetic mean X is easy to compute. Furthermore, it is a statistically
unbiased estimator of y no matter what the underlying distribution may be
(lognormal, normal, Weibull, etc.). If the underlying distribution is normal, it
is also the MVU estimator of i Unfortuhately, X does not have this MVU
property when the underlying distribution is lognormal. Also, ¥ is highly sensitive
to the presence of one or more large data values. Nevertheless, even when the
underlying distribution is lognormal, X is probably the preferred estimator if the
coefficient of variation % is believed to be less than 1.2 (a rule suggested by
Koch and Link, 1980).

If statistical tests support the hypothesis of a lognormal distribution, the
MVU estimator 4, described in Section 13.1.1 may be used. As a general rule,
gy is preferred to X if 4 > 1.2, that is, if the lognormal distribution is highly
skewed, assuming that one has a good estimate of 03, the variance of the
transformed variable Y = In X. Finally, the easily computed estimator £,
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described in Section 13.1.2, may be used to estimate p if £ is reasonably large
and the distribution is lognormal.

13.1.1  Minimum Variance Unbiased
Estimators

This section shows how to estimate w and o2 from the MVU estimators i, and
6%, developed independently by Finney (1941) and Sichel (1952, 1966). An
MVU estimator of a parameter is one that is statistically unbiased and has the
smallest sampling error variance of all unbiased estimators of the parameter.
Hence, since ji, is an MVU estimator, it has a smaller variance than ¥ or the
alternative estimators of p given in Sections 13.1.2 and 13.1.3. However, j,
is a biased estimator of y if the distribution is not lognormal.

To obtain 4,, we first estimate the parameters u, and ai of the lognormal
distribution by computing

1 n
y=- 2y 13.1
ni=1
1 n
2 - i — y)? 13.2
5y n—1i=zl(y’ » 3

where ¥ and s§ are the arithmetic mean and variance of the n transformed

values y; = In x;. Then compute

) 52
#1 = [exp @M(—;) 13.3

where exp (3) is the sample geometric inean, and ¥, (¢) (with 1 = s§/2) is the
infinite series

B =1 (-1 - 1)%
Y0 =1+ TR )(n + 3)
n - D7

13.4

HTp T D +3)m+5 -

This series can be programmed on a computer, or one may use tables of
¥,(t) given by Aitchison and Brown (1969, Table A2), Koch and Link (1980,
Table A7), or Sichel (1966). (Sichel’s table is entered with ¢ = n — l)sfln
rather than ¢ = s§/2.) Portions of these tables are given here as Table A9.
Also, Agterberg (1974, p. 235) gives a table from which V¥,.(2) can be obtained
for ¢ up to 20, and Thoni (1969) published tables for use when logarithms to
base 10 are used.

An unbiased estimator of the variance of #, is (from Bradu and Mundlak,
1970, Eq. 4.3)

2\ 12 2n — 2
$2i) = exp (29) HWC—’)] - \p[syi”%_l)]} 13.5

where 3 and s§ are computed from Eqgs. 13.1 and 13.2. To obtain the first and
second ¥,() terms in Eq. 13.5, enter Table A9 with ¢ = s§/2 and ¢ =
s5(n — 2)/(n — 1), respectively.
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The MVU estimator of the variance o2

distribution was found by Finney (1941) to be

of a two-parameter lognormal

-2
6% = exp (29) {‘I’n(253) - \I/,.[s—yj(l—’lT)B 13.6

EXAMPLE 13.1

Table 13.1 gives 10 data that were drawn at random (using a

computer) from a 2-parameter lognormal distribution with parameters ‘
gy, = 1.263 and 03 = 1.099. We use ji, to estimate the mean u =
exp (p, + 03/2) = 6.126 of this distribution, using the 10 data.
We also estimate Var(gd,) using Eq. 13.5. Equations 13.1 and 13.2
give y = 1.48235 and sﬁ = 0.56829 (see Table 13.1). Using linear
interpolation in Table A9, we find ¥ ,4(0.56829/2) = 1.2846.
Therefore, Eq. 13.3 gives

f; = 4.403(1.2846) = 5.66

which is smaller than the true mean g = 6.126 of the distribution.
Equation 13.5 gives

s%(G;) = exp (2.964) {[¥,5(0.28414)]> — ¥,4(0.5051)}
= 1.97

or the standard error s(i;) = 1.40. Hence, our estimate of u is
f; = 5.66, and its standard error is 1.40. These estimates may be
compared with ¥ = 5.89 and sx) = 1.80. For this data set X is
closer than fi; to u = 6.126. .

Table 13.1 Ten Data Drawn at Random
from a Two-Parameter Lognormal
Distribution with Parameters u, = 1.263

and o2 = 1.099

X; yi = Inx;
3.161 1.1509
4.151 1.4233
3.756 1.3234
2.202 0.7894
1.535 0.4285
20.76 3.0330
8.42 2.1306
7.81 2.0554
2.72 1.0006
443 1.4884

X =058 y=148235
s2 = 32.331 s} = 0.56829
5, =569 s, =0.75385
s(X) = 1.80 exp(y) = 4.40
= sample geometric mean

e an LI
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As estimate of o? is obtained from Eq. 13.6:
67 = 19.389[¥,4(1.1366) — ¥,,(0.50515)]

= 19.8

which is considerably smaller than the true variance o = (6.126)* -
[exp (1.099) — 1] = 75.1. This discrepancy shows the importance
of obtaining precise estimates of y, and af when using j; and 62
to estimate u and ¢®. Using more than n = 10 data is clearly
desirable.

13.1.2 Less Efficient But Simpler

Estimators
A simple method of estimating the mean u and variance o2 of the two-parameter
lognormal distribution is to replace p, and ¢2 by ¥ and s in the formulas for
¢ and o2, We get

Y

2
-, Sy
= exp <y + ?> 13.7

and

A2=

6% = p” [exp (s3) — 1] 13.8

For example, using the data in Table 13.1, we obtain

- 0.56829
i =exp <1.48235 + > > = 5.85

and
6, 2

(5.85)[exp (0.56829) — 1] = 26.2

The variance of ji may be approximated as follows by using a result in
Kendall and Stuart (1961, p. 69):

2 2 —(n— )2
s 2s
2 o~ 54 2 -2
s°(ih) = exp <2y + n>[<1 " >
2 g2\~ =1)
* exp <—y> - <1 - —y> } 13.8a
n n

Using the data in Table 13.1, we find sﬁ/n = 0.056829, so Eq. 13.8a gives
s%(i) = 2.6387, or s(i) = 1.6.

The mathematical expected value (over many repetitions of the experiment)
of ji is (from Kendall and Stuart, 1961, p. 68):

52 o2\~ = D2 n—1
v+ 2\ = _ 2 = 2
IR e

(true mean) (bias factor)

+ 1R
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Hence, [ is biased upward for u, but the bias factor approaches zero as n
becomes large. For example, if n = 20 and 03 = 2, then the bias factor =
1.0522, indicating a 5.22% positive bias on the average. If n = 100, the bias
factor is only 1.010, a 1% bias.

Note that i will tend to decrease as n increases because the bias goes to
zero for large n. This effect should be kept in mind if 4 is used to evaluate
compliance with environmental pollution guidelines. For example, one facility
emitting pollutants might be declared in compliance, whereas another is not,
solely because the first took more samples, not because it was emitting lower
levels of pollution. This problem does not occur if X or i, are used to estimate
p. The same problem occurs if the geometric mean is used to estimate the true
median of a lognormal distribution, as discussed in Section 13.3.3. Also see
Landwehr (1978).

13.1.3 Probability Plotting

In Section 11.2 we used probability plotting to estimate the mean and variance
of a normal distribution. A similar procedure may be used to estimate the
parameters p, and ai of the lognormal distribution, which can in turn be used
to estimate the mean, p, and variance, o2, of the distribution.

First, order the n untransformed data from smallest to largest to obtain the
order statistics x;;; < Xy < * * *© < Xp,. Then plot xp; versus (i — 0.5)
100/n on log-probability paper and fit a straight line by eye (or use the objective
method of Mage, 1982) if the plotted points fall approximately on a straight
line. Then the 0.16, 0.50, and 0.84 quantiles (xg 16, Xo.50, and Xg g4, respectively)
are read from the plot and are used as follows to estimate p, and "3 (from
Aitchison and Brown, 1969, p. 32):

ﬁy =In Xo0.50 13.9

2
1
82 = {m [— <M + x"—““)B 13.10
2\x016  Xos0
The mean and standard deviation of the distribution are then estimated by
computing

6,2
i = exp <;2y + 7’) 13.11

¢ = flexp 62) — 11'? 13.12

Estimates of the geometric mean, exp (u,), and the geometric standard deviation,
exp (o)), are given by x50 and 3(x0.50/X%0.16 + Xo.84/Xo.50), TESpectively.

Probability plotting is a quick way to evaluate whether the data are likely to
have come from a two-parameter lognormal distribution—that is, by checking
whether a straight line fits the plotted points. If so, the foregoing procedure is
used to estimate . If not, probability plotting techniques for other hypothesized
distributions, such as the normal, Weibull, gamma, and exponential, can be
tried by using methods given by, for example, Hahn and Shapiro (1967) and
King (1971).
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Figure 13.1 Log-probability plot of the data in Table 13.1.

EXAMPLE 13.2

Return to the n = 10 data in Table 13.1. Since these data are drawn
from a 2-parameter lognormal distribution, the ordered data should
plot as a straight line on log-probability paper. This plot is given in
Figure 13.1. The eyeball fit straight line is used to obtain the
percentiles £y ;s = 1.95, %50 = 4.3, and £y 5, = 9.5. Using these
in Egs. 13.9 and 13.10 gives 4, = 1.459 and 6§ = 0.6268. These
values deviate from the true values p, = 1.263 and o> = 1.099
because of random sampling error and the subjective (eyeball) fit of
the line to the points. Using j, and 63 in Eq. 13.11 estimates the
mean to be 5.88 as compared to x = 5.89, i = 5.85, and 4, =

5.66.

13.2 CONFIDENCE LIMITS FOR
THE MEAN

Thus far we have discussed methods for estimating the mean p of a two-
parameter lognormal distribution. We now see how to obtain confidence limits
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for p. If n is large, the simple method (Eq. 11.8) in Section 11.7 may be used.
However, if one is confident that the underlying distribution is lognormal, the
method discussed in this section is preferred.

Land (1971, 1975) showed that the upper one-sided 100(1 — «)% and the
lower one-sided 100a% confidence limits for u are obtained by calculating

2 syHl—a
UL, ,=exp(y + 0.5s, + N 13.13
n —

and

s H,,
LL, = exp <y + 0.552 + J’_1> 13.14
 —

respectively, where ¥ and si are calculated using Eqgs. 13.1 and 13.2, respectively.
The quantities H, _, and H, are obtained from tables provided by Land (1975),
a subset of which are given here in Tables A10-A13. The values of H, __ and
H, depend on s, n, and the chosen confidence level «.

EXAMPLE 13.3

Suppose n = 15 data have been drawn at random from a 2-parameter
lognormal population. We estimate the mean p of this population,
using the MVU estimator 4, (Eq. 13.3); we then obtain the upper
and lower one-sided 90% confidence limits about u, using Eqs.
13.13 and 13.14.

Suppose the n = 15 data give y = 1.8 and s = 4.0. Then Eq.
13.3 gives

fiy = exp (1.8) ¥,5(2) = 6.0496(5.439) = 33

where ¥,5(2) is obtained from Table A9. Entering Table A10 with
n = 15 and s, = 2.0, we obtain Hyg, = 3.244. Hence,

2(3.244)>
U =exp (1.8 4+ 0.54) +
Lo.so p < C)) Ji4
=253
Entering Table A1l with n = 15 and s, = 2.0, we find Hy,, =
—1.733. Hence,
2(—1.733)>
LLgo =exp (1.8 + 0.5@4) + ———
0.10 p < @ J1a

= 17.7

In summary, p is estimated to be 33 with lower and upper one-
sided 90% limits of 18 and 250. The interval 18 to 250 is the two- ~
sided 80% confidence interval about u. To obtain one-sided upper
and lower 95% limits (equivalent to a two-sided 90% confidence
interval about u) use Tables A12 and A13.

In practice, H may be required for values of s, and n not given in Tables
A10-A13. Land (1975) indicates that cubic interpolation (four-point Lagrangian

— A
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interpolation; Abramowitz and Stegun, 1964, p. 879) appears to be adequate
with these tables. )

13.3 ESTIMATING THE MEDIAN

The true median of an underlying distribution is that value above which and
below which half the distribution lies. If the distribution is symmetrical, then
the median equals the mean g. But for the two-parameter lognormal or other
right-skewed distributions, the true median is less than u. For left-skewed
distributions the median exceeds pu.

13.3.1 Sample Median

The median of any distribution, no matter what its shape, can be estimated by
the sample median. First, the data are ranked from smallest to largest. Then
the sample median (median of the n data) is computed from the sample order

statistics X3 =< X33 © © © =< Xp as follows:
it} (pa] {n)
sample median = X, + 1y if n is odd 13.15
= %(x[n/2] + xl(n+2)/2]) lf n is cven 13.16

Uses of the sample median are discussed in Section 14.2.2.

EXAMPLE 13.4

We estimate the median of the population from which the n = 10
data in Table 13.1 were drawn. Since n = 10 is even, the sample
median is

%(x“O/z] + xll2/2]) = %(X[SJ + ‘x[6]) = %(3.756 + 4151) = 3.95

Hence, for this particular set of data, the sample median is larger
than exp (p,) = exp (1.263) = 3.536, the true median of the
population.

13.3.2 Minimum Variance Unbiased
Estimator

As we noted earlier, using the sample median to estimate the true median is
appropriate no matter what the underlying distribution may be. However, if the
distribution is known to be lognormal, other methods can also be used. One
approach is to prepare a log-probability plot of the data, as discussed in Section
13.1.3. Then the true media is estimated by the 50th percentile, x 5o, Obtained
from the straight line.

If the distribution is truly lognormal, and if the lognormal distribution
parameter ai (defined in Table 12.1) is known a priori, an unbiased estimator
of the true median is

. . 02
M, = exp (¥) exp <— 7’) 13.17

TN

L..::.‘.J'
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If an estimate s§ of 05 is available, s§ could be used in place of a§ in Eq.
13.17. However, the preferred approach is to use the MVU estimator given by
(from Bradu and Mundlak, 1970)

M, = exp (3) ¥,()

where ¢t = —si/[Z(n — D] and ¥,(?) is the infinite series defined by Eq. 13.4.
Using this value for z and the first five terms of Eq. 13.4, we obtain the
approximate expression

. sy (= D)

M, = exp (y)[l T2 T 2 + D)

L e-vey )
312n%(n + D + 3) | 4@ + D + 3 + 5)

] 13.18

Additional terms in the ¥,(r) series may be required “before ¥, (r) stabilizes
if s§ is very large and n is small. An unbiased estimator of Var(M,) is (Bradu
and Mundlak, 1970, Eq. 4.3)

- _ s§ 2 2s§
s°(My) = exp (2y){[‘l'n<—2(,,—_1)>] - ‘I’n<‘n —~ 1>}

13.3.3 Sample Geometric Mean

The sample geometric mean (GM) is computed as

n

GM = Il x" = exp ()
i=1
where
y=lz y,=_2 lnx,-

It is tempting to estimate the true median exp ( ) of a lognormal distribution
by computing the GM—that is, by simply replacing y in this expression by
the estimate y. However, in the previous section we leamned that the GM is a
biased estimator of exp (uy). The bias factor is exp (a§/2n), since (from
Aitchison and Brown, 1969, p. 45)

02
E(GM) = Elexp (3)] = exp (u,) exp <2T:>

= (true median) (bias factor) 13.19

The bias factor is positive and decreases as n increases and/or as a§ (or
equivalently the skewness of the lognormal distribution) becomes small.

The GM is also a biased estimator of the mean of the two-parameter lognormal
distribution. This fact can be seen by writing Eq. 13.19 in a different way
(from Aitchison and Brown, 1969, p- 45):

n—1 ,
pexp | —— — o,

(true mean) (bias factor)

E(GM)
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In this case the bias factor is less than 1, so the GM tends to underestimate
the true mean. Furthermore, this bias does not go to zero as n increases.

In summary, if the underlying distribution is known to be lognormal, then
the sample GM estimates the true GM if n is reasonably large, but the sample
GM should not be used to estimate the mean u unless af is very near zero.

Landwehr (1978) discusses some properties of the geometric mean and some
problems inherent in its use for evaluating compliance with water quality

- standards for microbiological counts. The basic problem, which is generic to
all compliance situations, is that the sample GM will tend, on the average, to
be smaller if a larger number of samples is collected. Hence, one facility
emitting pollutants might be declared in compliance, whereas another is not,
solely because the first took more samples. We discussed in the last paragraph
of Section 13.1.2 that this same problem occurs if & (Eq. 13.7) is used to
estimate the lognormal mean. Landwehr (1978) shows that this problem also
occurs for other distributions, such as the Weibull and gamma.

13.4 CONFIDENCE LIMITS FOR THE
MEDIAN

An approximate two-sided 100(1 — «a)% confidence interval for the true median
of a lognormal distribution is obtained by computing

exp (¥) exp (=t —am2,n—155) =< €xp (py) < exp (¥) €xXp (1 —or2,n—155) 13.20
or equivalently,

exp (3)
[exp (s~

where exp (s;) is the sample geometric standard error, and ¢, _, ,_ is obtained
from Table A2. These lower and upper limits, given by the left and right sides
of Eq. 13.20 are approximate when n is small and af is large since in this
situation exp (y) is a biased estimator of exp (u,). However, the bias factor
(63/2n) (from Eq. 13.19) will be near zero even for rather small » unless o2
is very large.

The use of Eq. 13.20 requires the underlying distribution to be lognormal.
However, a two-sided 100(1 — «)% confidence interval for the true median
from any continuous underlying distribution can be easily obtained from Table
Al4 if the data are bt correlated. This table gives values for integers [ and u
such that the order statistics x;; and xp,; are the estimated lower and upper
limits.

For example, suppose two-sided 95% confidence limits are desired, and a
random sample of n = 10 independent measurements from some unknown
underlying distribution has been obtained. From Table Al4 we find for a =
005 and n = 10 that [ = 2 and u = 9. Hence, the lower and upper 95%
confidence limits are given by the second and ninth largest data values,
respectively, in the random sample of ten measurements. For the n = 10 data
in Table 13.1, we find x;; = 2.202 and xy; = 8.42, which are the lower and
upper 95% limits about the true median. Values of [ and u for n as large as
499 and for o = 0.10, 0.05, 0.025, 0.01, 0.005, and 0.001 are given by Geigy
(1982, pp. 103-107).

< exp (p,) < exp () [exp (s)]" ="~

1
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If n is fairly large, say n > 20, approximate values for [ and u may be
obtained as follows:

n+1 _ Zl—a/Z\/;

!l = 13.21
2 2
n+1 Zl—alz‘/’—l
= + 13.22
u > 2 3

where Z, _, is obtained from Table Al. For example, if n = 100 independent
measurements are drawn at random from a population and a 95% confidence
interval about the true median is desired, then Zyg;5 = 1.96, and Egs. 13.21
and 13.22 give [ = 40.7 and u = 60.3. The value of the lower confidence
limit, x;40.7), is obtained by linear interpolation between the 40th and 41st sample
order statistics. Similarly, the upper limit, xgeo 3, is obtained by linear interpolation
between the 60th and 61st sample order statistics.

13.5 CHOOSING n FOR ESTIMATING
THE MEDIAN

Hale (1972) derived the following expression for approximating the number of
independent observations, n, required for estimating the true median of a
lognormal distribution:

2 2
Z1 _onSy

- 13.2
"TUnd+ DP + Z2_ns?N 3

where d is the prespecified relative error in the estimated median that can be
tolerated, 100(1 — )% is the percent confidence required that this error is not
exceeded, and s§ is given by Eq. 13.2.

For example, suppose we choose d = 0.10 (10% relative error) and o =
0.05, and that prior studies give s§ = 2.0. Also, suppose the size, N, of the
population is very large. Then Eq. 13.23 gives

_ (1.96)*(2)

Gy - 8= 846

If the budget will not allow collecting this much data, we must either accept a
larger percent error or smaller confidence (larger o). For example, if d is set
at 0.50 (50% relative error) and o = 0.05, we obtain n = 47.

13.6 ESTIMATING QUANTILES

Estimates of quantiles other than the median are frequently needed to evaluate
compliance with standards or guidelines. For example, as discussed by Crager
(1982), one way to evaluate whether air quality standards for ozone have been
violated is to estimate the 1 — 1/365 = 0.99725th quantile of the population
of daily maximum ozone readings. By definition, the 0.99725th quantile is that
daily maximum reading that exceeds 100(0.99726) = 99.726% of the population
and is exceeded by 100(0.00274) = 0.274% of the population.
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One method of approximating quantiles of a lognormal distribution is to read
the quantile directly off a log-probability plot. For example, using the log-
probability plot in Figure 13.1, the 0.75 and 0.99 quantiles are estimated to be
7.4 and 28, respectively. This method is subjective, since the line is drawn by
eye and it is a matter of judgment whether the plotted data are adequately fit
by a straight line. These problems can be overcome by using the objective
fitting and testing procedures of Mage (1982). However, estimating extreme
quantiles from a region of the line that extends beyond the range of the data
is not recommended.

Since the data in Table 13.1 were drawn from a two-parameter lognormal
distribution, the true pth quantile is exp (u, + Z,0,), where Z, cuts off 100(1
— p)% of the upper tail of the standard normal distribution. Since p, = 1.263,
aﬁ = 1.099, and Z;q4 = 2.3263 (from Table Al), the true 0.99 quantile is
exp [1.263 + 2.3263(1.04833)] = 40.5, as compared to the estimate of 28
obtained from the probability plot. The difference between 40.5 and 28 illustrates
the difficulty of estimating extreme quantiles by probability plotting when only
ten data from the population are available.

Rather than use probability plotting to estimate a quantile x, of a two-
parameter lognormal distribution, we may compute

£, = exp (¥ + Z,5,) = exp (Y) exp (Z,s,) 13.24
Using the data in Table 13.1, we obtain, using Eq. 13.24,
X090 = exp [1.48235 + 2.3263(0.75385)] = 25.4

which is similar to the estimated 0.99 quantile obtained earlier by probability
plotting.

We note that Saltzman (1972) gives a nomograph for estimating quantiles,
using Eq. 13.24, that eliminates the need for looking up Z, in Table Al. The
nomograph gives the value of exp (Z,s,) for given values of p and s,. Then
exp (Z,s,) is multiplied by the sample geometric mean exp (¥) to obtain x,.

13.7 SUMMARY

This chapter focused on the lognormal distribution, since it is so frequently
used. Methods for estimating the mean and median of that distribution have
been given, with the warning that they will result in biased results if the
underlying distribution is not lognormal. Alternative methods are also given
since they perform well under certain conditions and are easier to compute. We
have also provided methods for computing confidence limits for the mean and
median, for estimating quantiles other than the median, and for deciding how
many samples, n, are required for estimating the median.

EXERCISES

13.1 In Example 13.3 find the two-tailed 90% confidence interval about gy,
using y = 1.8, s§ = 4.0, and Land’s method.

13.2 Suppose n = 30 observations from a lognormal distribution have been
obtained and that Eqs. 13.1 and 13.2 yield y = 1.2 and si = 4.0, using
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those data. Estimate the median of the lognormal population using Eq.
13.18. Estimate the standard error of this estimate.

13.3  Suppose 30 observations are drawn at random from a lognormal distribution
and the sample mean and variance of the logarithms of these data are y
= 1.2 and s§ = 4.0, as in Exercise 13.2. Compute a 95% confidence
interval for the true median of the underlying distribution.

13.4 In Exercise 13.3 determine the order statistics of the sample of size 30
that are the 95% limits on the true median (use Egs. 13.21 and 13.22).

13.5 How many randomly drawn observations from a lognormal distribution
should be taken to estimate the median with a relative error no larger
than 20% with 90% confidence if preliminary data give s§ = 1.5. Assume
the size of the target population is very large. Repeat the calculations,
using a relative error of 50%.

ANSWERS
13.1 2(4.564)>
U =¢ 1.8 + 0.5(4) + = 513
Loos Xp < CY) Jia
2(—2.144)>
L =exp(1.8+054) + —F——) =14
LO.OS p ( ( ) \/ﬁ
13.2 Mz = 3.320[1 — 0.066667 + 0.002078853

— 0.000040597 + 0.000000561]
= 3.1

s2(M,) = 11.02318{[¥;0(~0.06897)]

— W,5(—0.27586)}
W¥30(—0.06897) = 0.935368

¥,,(—0.27586) = 0.76414
Therefore, s(M,) = 1.1

13.3 When n = 30, t0_975’29 = 2.045 (fl‘om Table A2). By Eq. 1320, the
lower and upper limits are 1.6 and 7.0.

13.4 Since n = 30 and Z; 4,5 = 1.96, we have I = 10.13 and u = 20.87.
Therefore the lower limit is 13% between the 10th and 11th largest
observations. The upper confidence limit is 87% between the 20th and
21st largest observations.

13.5 Using Eq. 13.23 with d = 0.20 gives n = 123, and with d = 0.50
gives n = 25.

standard error of M.,.




1 4 Estimating the Mean
and \anance from
Censored Data Sets

In some environmental sampling situations the pollution measurements are
considerably greater than zero, and measurement errors are small compared to
variations in true concentrations over time and/or space. In other situations the
true concentration of the sample being measured may be very near zero, in
which case the measured value may be less than the measurement limit of
detection (LOD). In this situation, analytical laboratories may report them as
not detected (ND), zeros, or’'less-than (LT) values. Data sets containing these
types of data are said to be ‘‘censored on the left’’ because data values below
the LOD are not available.

These missing data make it difficult to summarize and compare data sets and
can lead to biased estimates of means, variances, trends, and other population
parameters. Also, some statistical tests cannot be computed, or they give
misleading results. One problem, the topic of this chapter, has to do with how
to estimate the mean x and variance o2 of a population when only a censored
data set is available. We begin by considering the several ways laboratories
may report measurements, and the biased estimates of p and ¢ that can result
when actual measurements are not available. We then discuss the median,
trimmed mean, and Winsorized mean and standard deviation, methods that may
be used on censored data sets. Then two methods (probability plotting and
maximum likelihood) are given for using a censored data set to estimate p and
o2 of a population that has a normal or two-parameter lognormal distribution.

14.1 DATA NEAR DETECTION LIMITS

Keith et al. (1983) define the LOD as ‘‘the lowest concentration level that can
be determined to be statistically different from a blank.”’ When a measurement
is less than the LOD (however it is defined), the analytical laboratory may: (1)
report the datum as ‘‘below LOD,’’ (2) report the datum as zero, (3) report an
LT value—that is, a numerical value (usually the LOD) preceded by a “‘<”’
sign, (4) report some value between zero and the LOD, for example, one half
the LOD, as suggested by Nehls and Akland (1973), or whenever possible (5)
report the actual concentration (positive or negative) whether or not it is below
the LOD.
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The last option, the reporting of actual concentrations, is the best procedure
from both practical and statistical analysis points of view, as discussed by
Rhodes (1981), assuming the very small measurement values are not the result
of a measurement bias in the laboratory. Environmental Protection Agency
(1980, Chapter 6) discusses detection limits for radionuclides, emphasizing that
these limits are estimated quantities that should not be used as a posteriori
criterion for the presence of radioactivity. Reporting only ‘‘below LOD” or
zero throws away information useful to the data analyst. Evidence of this loss
is supplied by Gilliom, Hirsch, and Gilroy (1984), who showed, using computer
Monte Carlo experiments, that linear trends in data near detection limits are
more likely to be detected if data sets are not censored-that is, if the actual
concentrations for all analyses are used rather than only those above the detection
limit.

Keith et al. (1983) recommend that measurements below the LOD (as they
define it) be reported as ND and that the LOD be given in parentheses. It is
strongly recommended here that, whenever the measurement technique permits,
report the actual measurement, whatever it may be, even if it is negative.
Similar recommendations are also made by Environmental Protection Agency
(1980, Chapter 6) and American Society of Testing Materials (1984).

14.2 ESTIMATORS OF THE MEAN
AND VARIANCE

14.2.1 Biased Estimators

If only LT values are reported when a measurement is below the LOD, the
mean y and variance ¢ of the population might be estimated by computing the
sample mean X and variance s? in one of the following ways:

[y

. Compute x and s2 using all the measurements, including the LT values.

2. Ignore LT values and compute X and s using only the remaining ‘‘detected’’
values.

3. Replace LT values by zero and then compute x and s2.

4. Replace LT values by some value between zero and the LOD, such as one

half the LOD; then compute X and s°.

The first three methods are biased for both x and o2. The bias of the second
method is illustrated in Environmental Protection Agency (1980, Chapter 6).
The fourth method is unbiased for u (but not for o?) if the analytical measurement
technique cannot result in negative measurements, and if all measurements
between zero and the LOD are equally likely to occur—that is, if they have a
uniform distribution. Kushner (1976) studied this fourth method when aerometric
data below the detection limit are lognormal. For his application (pollution data)
he concluded that biases in using the midpoint would be overshadowed by
measurement error.

If the reported data set consists almost entirely of LT values, one could use
the first method (averaging all the data, including LT values) and report the
resulting value of X preceded by a ““<’’ sign. In this case the complete data
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set should be reported, if possible, including the LT values. As a minimum,
the number of LT values used in computing X and s> should be indicated.

14.2.2 Sample Median

Instead of computing X when the data set is censored, one could compute the
sample median. This approach is appropriate for estimating the mean if the
underlying distribution is symmetric. The median can be estimated even if
almost half the data set consists of NDs, LT values, or ‘‘trace.’”” The reason
is that the median is computed by using only the middle value of the ordered
measurements if »n is odd, or the average of the two middle values if n is even
(see Egs. 13.15, 13.16). The median is also not affected by erratic extreme
values (errors or mistakes), that is, it is robust or resistant to outliers. If the
distribution is asymmetric, then the sample median estimates the median of the
population rather than the mean. Hence, the sample median will tend to be
smaller than the true mean p if the distribution is skewed to the right and larger
than the true mean if the distribution is skewed to the left.

14.2.3 Trimmed Mean

An alternative to computing the median of n data values is to compute a 100p %
trimmed mean, where 0 < p < 0.50, that is, to compute the arithmetic mean
on the n(1 — 2p) data values remaining after the largest np data values and
the smallest np data values are eliminated (trimmed away). If the number of
measurements reported as NDs, LT, or ‘‘trace’’ are no more than np, then the
trimmed mean can be computed. The degree of trimming (p) that can be used
will depend on the number of these values that are present. The number of data
trimmed off both ends of the ordered data set is the integer part of the product
pn. When n is even, the most extreme case is when all but the middle two
data are trimmed away. In that situation the trimmed mean is just the sample
median.

The trimmed mean is usually recommended as a method of estimating the
true mean of a symmetric distribution to guard against outlier data (very large
data that are mistakes or are unexplainable). Hence, it may be useful even if
the data set does not contain NDs or LT values. When the underlying distribution
is symmetric, Hoaglin, Mosteller, and Tukey (1983) suggest that a 25% trimmed
mean (the midmean) is a good estimator of u. Hill and Dixon (1982) considered
asymmetric distributions and found that a 15% trimmed mean was a ‘‘safe’’
estimator to use, in the sense that its performance did not vary markedly from
one situation to another. Mosteller and Rourke (1973) give an introductory
discussion of trimmed means. David (1981) considers the statistical efficiency
of trimmed means.

EXAMPLE 14.1

Suppose n = 27 data are collected from a symmetric distribution
with true mean p. If we want to estimate p using a 25% trimmed
mean, we first compute 0.257 = 0.25(27) = 6.75. Hence, the 6
smallest and 6 largest data are discarded. The arithmetic mean of
the remaining 27 — 12 = 15 data is the estimate of p.
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14.2.4 Winsorized Mean and Standard
Deviation

‘“Winsorization’’ can be used to estimate the mean, u, and standard deviation,
o, of a symmetric distribution even though the data set has a few missing or
unreliable values at either or both ends of the ordered data set. A detailed
discussion of the method is given by Dixon and Tukey (1968).

Suppose n data are collected, and there are three ND values. The Winsorization
procedure is as follows:

1. Replace the three ND values by the next largest datum.

2. Replace the three largest values by the next smallest datum.

3. Compute the sample mean, X,, and standard deviation, s, of the resulting
set of n data.

4. Then x,,, the Winsorized mean, is an unbiased estimator of u. The Winsorized
standard deviation is

_ sn— 1)

bt v—-1

which is an approximately unbiased estimator for o, where n is the total
number of data values and v is the number of data not replaced during the
Winsorization. (The quantity v equals » — 6 in this example because 3 ND
values are present.)

5. If the data are from a normal distribution, the upper and lower limits of a
two-sided 100(1 — «)% confidence interval about u are

— Sw
= . o 1 P 2v—1 T 14.1
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where ¢, _ ., ,_; is the value of the ¢ variate (from Table A2) that cuts off
(100a/2)% of the upper tail of the ¢ distribution with v — 1 degrees of
freedom. (Note: Equation 14.1 is identical to the usual limits, Eq. 11.5,
except the degrees of freedom are v — 1 instead of n — 1, and s,, replaces
. s5.) One-sided limits on p can be obtained from Eqs. 11.6 and 11.7 using v
v — 1 degrees of freedom and s,,.

Note the distinction between trimming and Winsorizing. Trimming discards
data in both tails of the data set, and the trimmed mean is computed on the
remaining data. Winsorizing replaces data in the tails with the next most extreme
datum in each tail and then computes the mean on the new data set.

EXAMPLE 14.2

Suppose groundwater has been sampled monthly for 12 months from
the same well, yielding the following concentrations for a hazardous
chemical (ordered from smallest to largest):

trace trace 0.78 2.3 3.0
3.1 32 40 4.1 56 67 9.3

Replace the two trace concentrations by 0.78 and the two largest
concentrations by 5.6. The sample mean and standard deviation of

KBTI = e e e ek o St s e
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the new data set are X, = 3.24 and s = 1.838, respectively. This
X,, is a statistically unbiased estimate of . The Winsorized standard

deviation is
n—1
s
v—1

1. 11
= % = 2.888

[
3
I

There are v — 1 = 7 degrees of freedom, and Table A2 gives
fog75,7 = 2.365. Therefore, assuming the population is normally
distributed, the 95% upper and lower limits about u are (using Eq.
14.1) 3.24 + 2.365(2.888)/+/12, or 1.27 and 5.21.

If the data set is skewed to the right, the logarithms of the data
may be approximately symmetric. For example, if the untransformed
data are from a lognormal distribution, the logarithms are from a
normal distribution. If so, Winsorization could be used to estimate
the mean and standard deviation of the log-transformed data. These
Winsorized estimates, X,, and s,,, could then be used in Egs. 13.7
and 13.8 to estimate the mean and variance of the underlying
lognormal distribution.

14.3 TWO-PARAMETER LOGNORMAL
DISTRIBUTION

This section gives two methods for estimating y and ¢> when only a censored
data set from a two-parameter lognormal distribution is available. These methods
were developed for normal distributions, but they may also be used to estimate
the parameters g, and 05 of the two-parameter lognormal distribution, which
can be used in turn to estimate p and o2.

Two types of censoring can occur, depending on whether the number of
measurements falling below the point of censorship is or is not specified before
the measurements are made. If the number is not specified (i.e., if the number
is a random variable) the censoring is called Type I. If the number is specified,
we have Type Il censoring. Type I censoring is perhaps more common for
pollution data. Probability plotting can be used for either type. The maximum
likelihood method differs slightly for the two types as described in Section
14.3.2.

Data sets may also be ‘‘censored on the right,”” meaning that all data values
above some known point of censorship are not available. The two methods
given here may be used with censoring either on the left or on the right.

14.3.1 Probability Plotting

In Section 13.1.3 log-probability plotting was used to estimate the parameters
@y and oi of & two-parameter lognormal distribution when a complete (uncensored)
data set of size n was available. The same plotting procedure is used with a
left-censored data set except that the data below the point of censorship, x,
(which may be the LOD or some other value), cannot be plotted. If the n’

e )
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smallest of the n data are missing, then the (n’ + 1)th ordered datum x,, .
(smallest reported datum) is plotted versus [(n' + 1) — 0.5]100/n on log-
probability paper, and similarly for the (n' + 2)th datum Xy, .5 versus {(n'+ 2)
— 0.5]100/n, and so on. If the measurements above x, are from a lognormal
distribution, then the resulting plot should be linear on log- probablllty paper.
If so, a straight line is drawn through the points, and p, and o are estlmated
by Eqs. 13.9 and 13.10, respectively. Then the mean, p, and the variance, o
of the lognormal population are estimated by Eq. 13.11 and the square of Eq
13.12, respectively. From Eq. 13.10 we see that if more than 16% of the data
set is censored, “2 cannot be determined by Eq. 13.10. If the distribution is
known with assurance to be lognormal, the straight line might be extended
down to the 0.16 quantile. However, extrapolation into a region where no data
are available is always risky.

14.3.2 Maximum Likelihood Estimators

Cohen (1959, 1961) used the method of maximum likelihood to obtain estimates
of the mean and variance of a normal distribution when the data set is either
left or right censored. His procedure can also be applied to estimate the mean
and the variance of the logarithms of left or right-censored lognormally distributed
data, since the logarithms are normally distributed. Then the mean and the
standard deviation of the lognormal distribution can be estimated by Eqs. 13.11
and 13.12.

We now describe Cohen’s procedure for the lognormal case. Let n = total
number of measurements x;, k = number out of n that are above the LOD, y;
= In x;, and y, = In LOD. To estimate the mean p, and the variance 03 of
the log-transformed population, we

1. Compute h = (n — k)/n = proportion of measurements below the LOD.
2. Compute

1 k
Vo= 2 ¥ 14.2
ki=1
and
1 k
~ Z = V) 14.3
T ki
the sample mean and variance of the k measurements above the LOD.
3. Compute
2
s
§=——"7 14.4
Fu = Y0

4. Obtain an estimate A of the parameter A from Table Al5. Enter the table
with # and 4 and use linear interpolation in both horizontal and vertical
planes if necessary.

5. Estimate the mean and the variance of the log-transformed data as follows:

Iiy = yu - X(yu - yO) 14.5

=52+ A, — yo 14.6
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These estimates may then be used to estimate the mean and the variance of
the lognormal distribution by computing

6,2
i = exp <,z), + 7’) 14.7

62

i*lexp (63) — 1] 14.8

“This procedure is appropriate for Type I censored samples. For Type II
censoring the procedure is the same except that y, in Egs. 14.5 and 14.6 is
replaced by the logarithm of the smallest fully measured concentration—that is,
of the smallest observed concentration above the LOD (Cohen, 1961, Eq. 3).

If the censored data set is from a normal distribution, Eqs. 14.2-14.6 are
used to estimate y and o of that distribution, where y; = In x; and y, =
In LOD are replaced by x; and the LOD, respectively.

EXAMPLE 14.3

We use the mercury data in Table 12.3. For the sake of illustration,
suppose the LOD is 0.20 ppm, so the smallest observation in Table
12.3 is not available. The calculations are laid out in Table 14.1,
yielding the following estimates of the mean and standard deviation
of the lognormal population: i = 1.1 and é = 0.93.

Table 14.1 Computations to Estimate the Mean and Variance of a Two-
Parameter Lognormal Distribution Using a Left Censored Data Set
(Example 14.3)

1. The nine log-transformed data above the LOD = 0.20 are (from Table 12.3)

yi = —0.7985  y, = 0.1823
y, = —0.5108  y, = 0.3148
y; = —0.2744  y, = 0.5247
Yo = 0.04879 y, = 0.7227
ys = 0.1133
2.n=10,k=9,h=(0 - 9/10 = 0.1, yo = In LOD = — 1.6094

3. Using Egs. 14.2, 14.3, and 14.4, we obtain

y. = 0.03588 52 = 0.21193
4 = 0.21193/(0.03588 + 1.6094)2 = 0.07829

Entering Table Al5 with 2~ = 0.1 and ¥ = 0.07829, we find using linear interpolation, that
L =01164.

4. Therefore, Egs. 14.5 and 14.6 give

fi, = 0.03588 — 0.1164(0.03588 + 1.6094)
= —0.1556

& = 0.21193 + 0.1164(0.03588 + 1.6094)
= 0.5270

5. Therefore, using Egs. 14.7 and 14.8,
0.5270)

p = exp<—0.1556 + = 1.114 or 1.1

& = (1.114)* [exp(0.5270) ~ 1] = 0.8611 or § = 0.93

poit - ]
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14.4 THREE-PARAMETER
LOGNORMAL DISTRIBUTION

Suppose a left-censored data set has been drawn from a three-parameter lognormal
rather than from a two-parameter distribution. Recall from Chapter 12 that the
third parameter is 7, which shifts the two-parameter distribution to the right or
left, depending on whether 7 is positive or negative, respectively. If 7 is known
a priori, then the procedures given in Sections 14.3.1 and 14.3.2 can be applied
to the transformed data x; — 7 rather than to the x;. But estimation procedures
become more complicated if 7 is not known a priori. In that case the simplest
approach is to estimate 7, subtract this estimate from each x;, and use the
procedure in Sections 14.3.1 or 14.3.2.

The optimum method for estimating u and o? is to use maximum likelihood
methods if n is reasonably large (see discussions by Harter and Moore, 1966;
Tiku, 1968; Ott and Mage, 1976; and Mage and Ott, 1978). These require
iterative solutions on a computer. Two simpler approaches, the method of
quantiles and a graphical trial-and-error procedure are illustrated by Gilbert and
Kinnison (1981) and Aitchison and Brown (1969).

14.5 SUMMARY

This chapter considered methods for estimating the mean and variance of
populations when data less than some known point, frequently the limit of
detection, are censored—that is, they are not available to the data analyst.
Simple procedures such as treating these missing values as if they were zero
can lead to biased estimates. Three alternative methods that are unbiased for
estimating the mean when the population distribution is symmetric are the
median, trimmed mean, and Winsorized mean. Probability plotting and maximum
likelihood methods are illustrated when the two-parameter lognormal distribution
applies. The methods given here may also be used when the data set is censored
on the right (above some point) rather than on the left.

EXERCISES
14.1 Compute the median and the 15% trimmed mean on the following data
set:

34 18 22 32 48 35 5
22 21 8 10 12 2 8 95

X3

14.2 Assume the two smallest data in Exercise 14.1 were reported as ‘‘not
detected.”’ Compute a Winsorized mean and standard deviation for this
censored data set.

14.3 Suppose the smallest mercury datum in Table 12.3 was less than the
limit of detection (LOD), where LOD = 0.20. Assume the remaining
(censored) data set was drawn from a normal distribution and use Cohen’s
(1961) procedure to estimate p and a2 of that normal distribution.
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ANSWERS
14.1 The median is 22. The trimmed mean is 23.8.
142 %, =249 and s, = s(n — 1)/(v — 1) = 15.026(14/10) = 21.

14.3 h = (10 — 9)/10 = 0.10. Using the untransformed data in Egs. 14.2,
14.3, and 14.4, we obtain x, = 1.144, s2 = 0.23620, ¥ = 0.23620/
(1.144 — 0.20)> = 0.26505. From Table AlS, A = 0.1286. Therefore,
by Egs. 14.5 and 14.6, i = 1.0, 62 = 0.351 or ¢ = 0.59.

- o
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1 5 Outlier Detection and
Control Charts

An unavoidable problem in the statistical analysis of environmental pollution
data is dealing with outliers. Hunt et al. (1981) define an outlier to be “‘an
observation that does not conform to the pattern established by other observa-
tions.”” Outliers may arise from mistakes such as transcription, keypunch or
data-coding errors. They may also arise as a result of instrument breakdowns,
calibration problems and power failures. In addition, outliers may be manifes-
tations of a greater amount of inherent spatial or temporal variability than
expected for the pollutant. They could also be an indication of unsuspected
factors of practical importance such as malfunctioning pollutant effluent controls,
spills, and plant shutdowns.

This chapter briefly discusses data-screening and validation procedures,
followed by recommendations on how to handle outliers in practice. The chapter
then illustrates Rosner’s procedure for detecting up to k outliers and a method
for detecting outliers in correlated variables. The remainder of the chapter is
concerned with how to use Shewhart control charts to look for consistent data
over time or shifts in the mean or standard deviation of a time process.

Many methods for detecting outliers are discussed by Beckman and Cook
(1983), Hawkins (1980), and Barnett and Lewis (1978). Burr (1976) and
Vardeman and David (1984) provide many references on control chart techniques.
Kinnison (1985) discusses extreme value statistics, which are closely connected
with the ideas of outlier detection.

15.1 DATA SCREENING
AND VALIDATION

Statistical tests for outliers are one part of the data validation process wherein
data are screened and examined in various ways before being placed in a data
bank and used for estimating population parameters or making decisions. Nelson,
Armentrout, and Johnson (1980) and Curran (1978) discuss data screening and
validation procedures for air quality data.

Nelson and co-workers identify four categories of data validation procedures.

1. Routine checks made during the processing of data. Examples include looking
for errors in identification codes (those indicating time, location of sampler,
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method of sampling, etc.), in computer processing procedures, or in data
transmission.

2. Tests for the internal consistency of a data set. These include plotting data
for visual examination by an experienced analyst and testing for outliers.

3. Comparing the current data set with historical data to check for consistency
over time. Examples are visually comparing data sets against gross upper
limits obtained from historical data sets, or testing for historical consistency
"using the Shewhart control chart test. The Shewhart test was recommended
by Hunt, Clark, and Goranson (1978) for screening 24-h air pollution
measurements (one measurement per day) and is discussed in Section 15.6.

4. Tests to check for consistency with parallel data sets, that is, data sets
obtained presumably from the same population (e.g., from the same time
period, region of the aquifer, air mass, or volume of soil). Three tests for
doing so are the sign test, the Wilcoxon signed-ranks test, and the Wilcoxon
rank sum test. These tests are discussed in Chapter 18.

15.2 TREATMENT OF OUTLIERS

After an outlier has been identified, one must decide what to do with it. Outliers
that are obvious mistakes are corrected when possible, and the correct value is
inserted. If the correct value is not known and cannot be obtained, the datum
might be excluded, and statistical methods that were developed specifically for
missing-value situations could be used. Examples of such methods are general
analysis of variance and covariance (available in most commercial packages of
statistical computer codes), estimating the mean and the variance from censored
data sets by methods given in Chapter 14, and testing for trend by the Mann-
Kendall nonparametric test (discussed in Chapter 16). Alternatively, the outlier
could be retained, and a robust method of statistical analysis could be used,
that is, a method that is not seriously affected by the presence of a few outliers.
Examples of robust methods are the sample median, trimmed mean, and
Winsorized mean (discussed in Chapter 14); the trend estimation and testing
techniques given in Chapters 16 and 17; and the nonparametric tests for
comparing populations in Chapter 18.

It is important that no datum be discarded solely on the basis of a statistical
test. Indeed, there is always a small chance (the o level of the test) that the
test incorrectly declares the suspect datum to be an outlier. Also, multiple
outliers should not be automatically discarded since the presence of two or more
outliers may indicate that a different model should be adopted for the frequency
distribution of the population. For example, several unusually large measurements
may be an indication that the data set should be modeled by a skewed distribution
such as the lognormal. There should always be some plausible explanation other
than the test result that warrants the exclusion or replacement of outliers. The
use of robust methods that have the effect of eliminating or giving less weight
to extreme values should also be justified as being appropriate.

If no plausible explanation for an outlier can be found, the outlier might be
excluded, accompanied by a note to that effect in the data base and in the
report. In addition, one could examine the effect on final analysis procedures
applied to the data set when the outlier was both included and excluded. A
description of major effects should be included in the report. In some cases it
may be feasible to take another sample for comparison with the old.
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15.3 ‘ROSNER’S TEST FOR
DETECTING UP TO
k OUTLIERS

This section gives Rosner’s (1983) ‘‘many-outlier’” sequential procedure for
identifying up to k = 10 outliers. The procedure is an improved version of
Rosner’s (1975) ‘‘extreme studentized deviate’’ outlier test. Simonoff (1982)
found that this earlier test performed well compared to other outlier tests,
although Rosner (1983) points out that it tends to detect more outliers than are
actually present. This problem does not exist with the improved version discussed
here. Rosner’s (1983) method assumes that the main body of data is from a
normal distribution. If the assumption of a lognormal distribution is more
plausible, all computations should be performed on the logarithms of the data.

Rosner’s approach is designed to avoid masking of one outlier by another.
Masking occurs when an outlier goes undetected because it is very close in
value to another outlier. In Figure 15.1 datum B could mask datum 4 if an
inappropriate outlier test for A is performed.

To use Rosner’s approach, we need to specify an upper limit k on the number
of potential outliers present. Then we repeatedly delete the datum (large or
small) farthest from the mean and recompute the test statistic after each deletion.
Table A16 (from Rosner, 1983) is used to evaluate the test statistic when n =
25. This table is also used when the null hypothesis specifies a lognormal
distribution. Linear interpolation may be used to obtain critical values not given
in the tables for n between 50 and 500. A formula for obtaining approximate
critical values when n > 500 is given in the footnote to Table Al16. If n <
25, Rosner’s test cannot be used. In that situation, a test for a single outlier,
such as that by Dixon (1953), may be used, but the problem of masking may
occur.

Rosner’s tests are two-tailed since the procedure identifies either suspiciously
large or suspiciously small data. When a one-tailed test is needed, that is,
when there is interest in detecting only large values or only small values, then
the skewness test for outliers discussed by Bamett and Lewis (1978) is suitable.

Some notation is needed to illustrate Rosner’s procedure. Let ¥ and s be
the arithmetic mean and the standard deviation, respectively, of the n — i
observations in the data set that remain after the i most extreme observations
have been deleted. That is,

. 1 n—i
x® = - 2 x 15.1
n—1j=1
1 n—i 1/2
s@ = [ - 2 (x — Tc("’)z} 15.2
n—1j=1

where i ranges from zero to k. For example, ' and 5"’ are the sample mean

B A
r__l_!_.._r._l_l u—r T e @ |
0 10 20 30 40

CONCENTRATION

Figure 15.1 How datum B can ““mask” datum A if an inappropriate outlier test
is conducted for the suspected outlier A.
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and the standard deviation of the n — 1 data remaining after the most extreme
datum from @ has been removed. Let x” denote the most outlying observation
(farthest from the mean ) remaining in the data set after i more extreme data
(large or small) have been removed. Then
_ Ix(i) _ X(l’)l
Ri +1 = s(,’)
= test statistic for deciding whether the i + 1
most extreme values in the complete data set are 15.3
outliers from a normal distribution

N\; ., = tabled critical value (Table A16) for comparison with R;

Rosner provides a FORTRAN IV computer code for computing the values of
R;.; for an arbitrary unordered data set. This code is given here in Table 15.1.
The null hypothesis being tested by Rosner’s method is

H,: The entire data set is from a normal distribution

There are a series of alternative hypotheses:

H, ,: There are k outliers.
Hy—y: There are £ — 1 outliers.

H, \: There is one outlier.

The first test is Hy versus H,,, which is made by comparing R, with A,. If H,
is not rejected, we test Hy versus H,; _; by comparing R,_, with A, _,, and
so on, until one of the tests is statistically significant or all tests are nonsignificant.
If the test of H, versus H,,_, is significant, we conclude that k — 1 outliers
from the assumed normal distribution are present. When one of the tests is
significant, then no more tests are made.

If the null hypothesis is

H,: The entire data set is from a lognormal distribution

then Eqgs. 15.1, 15.2, and 15.3 are computed on the logarithms of the data, in

which case we use the notation y©, 3, s®, and R, ,, instead of x?, x©, 59,
and R, ,, respectively.

EXAMPLE 15.1

Table 15.2 gives the logarithms of n = 55 total suspended particulate
(TSP) air data that were collected every sixth day at a monitoring
site (from Nelson, Armentrout, and Johnson, 1980, Table 3.11).
The logarithms are ordered from smallest to largest. Since TSP data
are frequently approximately lognormally distributed, we use Rosner’s
procedure to test the null hypothesis Hy: The entire data set is from
a lognormal distribution. We are interested in testing whether outliers
from this assumed lognormal distribution are present. We use o =
0.05.

Suppose that prior to seeing the data set, we had set k = 3. Then
H, is tested versus the following series of k = 3 alternative hypotheses:
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Table 15.1 FORTRAN IV Program to Compute Values of R, for Rosner’s

(1983) Test for up to k Outliers

SUBROUTINE WT(X,N,NSAM,
NOUT,WTVEC,N1,Q)

C COMPUTE ESD OUTLIER STATISTICS

DIMENSION X(N), WTVEC(N1),Q(N)

11=1
SuM=0.0
SUMsSQ=0.0
FN=0.0
DO 2 I=1,NSAM
Q(I1)=0.0
SUM=SUM+X (1)
SUMSQ=SUMSQ+X(I)*x2
FN=FN+1.0

2 CONTINUE

1 SS=SUMSQ-(SUM**2)/FN
S=(SS/(FN-1.0))*x_5
XBAR=SUM/FN
B16=0.0
1B16=0
DO 3 I=1,NSAM
IF(Q(I).EQ.1.0) GO TO 3
A=ABS (X(I)-XBAR)
IF(A.LE.BIG) GO 10 3
BIG=A
IBiG=1

3 CONTINUE
WTVEC(II)=BIG/S
Q(IBIG)=1.0
TI=11+1
IF (I1I.GT.NOUT) GO TO 999
SUM=SUM-X(IBIG)
SUMSQ=SUMSQ-X(IBIG)*x2
FN=FN-1.0
GO TO 1

999 RETURN

END

where
NSAM

NOUT

N1

WTVEC

sample size of data set

maximum number of outliers
to be detected

maximum sample size for all
data sets used with this
subroutine on a given
computer run

maximum number of outliers
to be detected for all data
sets used with this subrou-
tine on a given computer
run

single-precision input vector
of dimension N, whose first
NSAM elements represent
the unordered data set to
which this subroutine is
applied

single-precision output vector
of dimension N1 whose first
NOUT elements are R,

EECEE ] RNOUT

single-precision input vector
of dimension N used
internally in the subroutine

Source: After Rosner, 1983.

Table 15.2 Total Suspended Particulate (TSP) Data (Units of fog, pg/m?)
Ordered from Smallest to Largest

2.56 3.58
3.18 3.58
3.33 3.64
3.33 3.64
3.40 3.69
3.43 3.69
3.43 3.71
3.43 3.74
3.50 3.76
3.50 3.76
3.50 3.81

3.83
3.91
3.91
3.95
3.97
3.99
4.03
4.04
4.04
4.04
4.04

4.06 4.32
4.08 4.33
4.09 4.33
4.17 4.34
4.17 4.44
4.17 4.47
4.23 4.48
4.23 4.48
4.26 4.62
4.29 4.68
4.32 5.16

Source: Data from Nelson, Armmentrout, and Johnson, 1980.
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Table 15.3 Computations for Using Rosner’s (1983) Test for up to Three
Ouitliers from a Lognormal Distribution

i _R.\'-i 1 i N
i on—i 3 sy’ »® =7 =3 (@ = 0.05)
0 55 3.94 0.444 2.56 3.11 3.165
1 54 3.96 0.406 5.16 2.96 3.155
2 53 3.94 0.374 4.68 1.98 3.150

H, ;: There are three outliers.
H, ,: There are two outliers.
H, : There is one outlier.

Values of 3, s, and R,;,, fori = 0, 1, and 2 were computed
from the data in Table 15.2. These values are summarized in Table
15.3. The terms ¥ and s§°) are the mean and the standard deviation
for all the data, whereas ¥ and s{" were computed after deleting
2.56, and ¥ and s after deleting 2.56 and 5.16. The most extreme
datum, y®, at each stage is also shown. The critical values in the
last column of Table 15.3 were obtained by linear interpolation
between the @ = 0.05 entries for n = 50 and n = 60 in Table
A16. That is, since there are 55 measurements in the data set, each
of the \;,, in Table 15.3 is halfway between the tabled values for
n = 50 and n = 60.

We first test Hy versus H,; by comparing R,; with A;. Since
R,; = 1.98 is less than A3 = 3.150, we cannot reject Hy in favor
of H, ;. Next, we test H, against H,, by comparing R,, with A,.
Since R,, = 2.96 is less than N\, = 3.155, we cannot reject Hy in
favor of H,,. Finally, we test H, against H,, by comparing R, ,
with A;. Since R,; = 3.11 is less than A, = 3.165, we cannot
reject H, in favor of H, ;. We conclude that there are no outliers
from the assumed lognormal distribution.

15.4 DETECTING OUTLIERS IN
CORRELATED VARIABLES

Suppose the following n paired data on two correlated variables x and z are
obtained: (x;, z;), (x2, 22), . . . » (X5 Z,). We wish to determine whether any
of the 2n observations are outliers. Rosner’s test could be applied independently
on each variable. However, if two variables are correlated, this additional
information can be used to uncover outliers that would not be found by using
a univariate procedure applied separately on each variable.

An indispensable tool for outlier detection with bivariate data is the simple
scatter plot of x; against z; for the n pairs of data. Visual inspection of these
plots will identify points that seem too far removed from the main cloud of
points. That is, these points may not be from the same bivariate distribution as
the remaining points. An approximate probability plotting technique suggested
by Healy (1968) and discussed by Barnett and Lewis (1978, p. 212) may be
used to supplement scatter plots. The method consists of computing a “*distance,”’

1
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D, from the cloud of points for each of the n pairs of observations. The distance
D; for the ith pair is calculated as follows:

v — 3\? v — 7\ [z — 7 z__.21/2
om|(57) - () () ()] e
SX sX sZ sZ

where X, Z, s,, and s, are the sample means and the standard deviations of the
two variables, and r is the estimated correlation between x and z, computed as

2~ X)@ —2)
ro= i=1 15.5

\@ 0 =B A (@~

If the pairs are assumed to be from a bivariate normal distribution except
for possible outliers, then the ordered D values are plotted on normal probability
paper. An obvious deviation from a straight line suggests either that the
assumption of a bivariate normal distribution is erroneous or that one or more
outliers are present. When a nonlinear plot occurs, the scatter plot should be
examined to identify possible outliers. If these suspect points are deleted and
the calculations and plotting redone, a resulting linear plot would suggest that
the remaining points are from a bivariate normal distribution. However, if a
nonlinear plot is still obtained, this would suggest that the ‘‘nonoutliers™ are
not from a bivariate normal distribution.

Healy (1968) and Barnett and Lewis (1978, p. 212) illustrate the technique
on a data set of 39 pairs of data. If the population distribution is assumed to
be bivariate lognormal rather than bivariate normal, then the D; would be
calculated using the logarithms of the data, and would be plotted on normal
probability paper.

Nelson, Armentrout, and Johnson (1980) give a graphical procedure for
identifying outliers from a bivariate normal or bivariate lognormal distribution
that is closely related to Healy’s method. They illustrate the technique, using
TSP air quality data obtained at the same times at two measurement sites.

15.5 OTHER OUTLIER TESTS

Methods for detecting multivariate outliers are discussed by Everitt (1978, pp.
67-73), Beckman and Cook (1983), Barnett and Lewis (1978), Rohlf (1975),
Gnanadesikan and Kettenring (1972), and Hawkins (1974). Outliers in designed
experiments are difficult to detect, but methods are discussed by Stefansky
(1972), Snedecor and Cochran (1980, p. 280), and Bamett and Lewis (1978,
pp. 238-249). Outliers from linear regression may be detected with methods
discussed by Snedecor and Cochran (1980, pp. 167-169), Bamett and Lewis
(1978, pp. 252-256), and Marasinghe (1985).

Rather than identifying outliers and discarding them before doing least squares
regression, one could do robust regression, as discussed and illustrated by
Mosteller and Tukey (1977) and Reckhow and Chapra (1983). The objective
of robust regression is to reduce the impact of data far removed from the
regression line. Standard least squares methods are highly sensitive to divergent
data points, whereas robust methods assign less weight to these points. However,




U e~y

Control Charts 193

Reckhow and Chapra (1983) caution that robust regression should be applied
only after the investigator is satisfied that less weight should be applied to the
divergent data. Nonparametric regression discussed by Hollander and Wolfe
(1973, p. 201) and Reckhow and Chapra (1983) is an alternative to either
standard least squares regression or robust regression.

15.6 CONTROL CHARTS

Outlier tests discussed in Sections 15.2 and 15.3 check for the internal consistency
of a data set. This section illustrates the use of Shewhart control charts for
checking whether current data are consistent with past data. A lack of consistency
over time may be an indication of data outliers. However, it could also indicate
shifts or trends in mean concentrations or in levels of variability. Control charts
are useful graphical tools because they provide a basis for action, that is, they
indicate when changing data patterns over time should be examined to determine
causes.

The essential features of the chart for means is illustrated in Figure 15.2.
The features of charts for ranges and standard deviations are similar, as will
be illustrated. The control chart for means can detect outliers and shifts in
average concentrations, whereas charts for ranges and standard deviations check
for shifts in variability. For completeness, the control chart for means should
be accompanied by a control chart for standard deviations or ranges.

The general idea underlying the control chart for means is first to select k
historical data sets and to compute the mean ¥;, range R;, and standard deviation
s; for each, where the ith data set contains #; data. This information is used to
construct the center line and the upper and lower control limits. Then if the k
subgroup means all fall between the control limits, the time process being

OBSERVED VALUES

OF x
./' UPPER CONTROL LIMIT

SUBGROUP AVERAGE, X

—t—t——t—1
1 2 3 4 5 6 1 8

SUBGROUP NUMBER
Figure 15.2 Essential features of a control chart for means.
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measured is said to be ‘‘in control’”’—that is, operating consistently over time.
In that situation we may think of each new subgroup of measurements as simply
a new set of data from the same population. If a process is in control, then it
makes sense to use the control limits to judge whether future subgroups of data
are from this same population. If one or more sufficiently large outliers are
present in a future subgroup, they will inflate the sample mean X; enough so
that it exceeds the upper control chart limit. Also, if the population mean has
changed greatly from what it was during the historical period, the sample mean
%; is likely to exceed the upper or lower control limits.

15.6.1  Assumptions Underlying Control
Charts

The assumptions underlying control charts are that the data are independent and
normally distributed with constant mean u and constant variance 2. These
assumptions can be expressed as the simple stochastic model

X =u+e t=1,2,- - . n 15.6

where x, is the datum at time ¢, p is the mean, n is the number of data values,
and e, are random, independent disturbances that are normally distributed with
mean zero and variance o2. :

For many environmental pollutants these assumptions are not realistic even
for a process with constant mean. As discussed several times in this book,
environmental data are commonly correlated and nonnormally distributed. Also,
the process variance may change over time. Berthouex et al. (1978) examine
whether Shewhart control charts are appropriate for data from processes with
these characteristics. Based on their experience with modeling sewage treatment
plants, they conclude that, given some care, standard quality control charts can
provide useful qualitative information for purposes of process control.

Berthouex, Hunter, and Pallesen (1978) show how to modify the standard
control chart procedures so that the usual assumptions are more nearly satisfied
to allow for a more rigorous quantitative analysis. They develop a realistic
stochastic model for the process, using time series methods developed by Box
and Jenkins (1976). The residuals from this model (residual = observed value
— value estimated using the model) are treated as raw data and are used to
construct control charts. If the model is comrect, the residuals will more nearly
fulfill the standard assumptions of normal, independent, constant variance errors.

For comprehensive discussions of Box-Jenkins time series modeling tech-
niques, the reader is referred to Box and Jenkins (1976), Fuller and Tsokos
(1971), McClearly and Hay (1980), Berthouex and co-workers (1975, 1978),
and Hipel and co-workers (19774, 1977b). The potential and problems associated
with applying control charts to detect pollution limit violations is discussed by
Vaughan and Russell (1983). They also discuss other graphical methods for
detecting trends (CUSUM and MOSUM techniques) and provide a list of
references to environmental quality control papers. Vardeman and David (1984)
provide an annotated list of papers and books on quality control techniques.
Burr (1976) and Wetherill (1977) give clear discussions of control charts, and
the former gives many references.

In the following material we present the standard control charting techniques
based on the usual assumptions (Eq. 15.6). If the data are normally distributed
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and serial correlation is not large, these methods should work well. If the data
are lognormally distributed, the standard procedures should be applied to the
logarithms of the data.

15.6.2 Historical Data Sets

Before a control chart can be constructed, it is necessary to define meaningful
historical data sets. These data sets were called rational subgroups by Shewhart
(1931). When sampling over time, a rational subgroup may be the n data
collected at a particular point in space by a given instrument during a specified
time period, such as a day, week, month or quarter.-For example, Hunt, Clark,
and Goranson (1978) and Nelson, Armentrout, and Johnson (1980) used the
five air quality (24-h) measurements made during a month at a particular
sampling site as a rational data set. If groundwater samples are being collected
monthly at a particular well, the three samples within each calendar quarter
might be used as a subgroup.

Rational subgroups must be chosen with care because the variability within
subgroups is used to construct control chart limits. Each subgroup should consist
of data that are homogeneous—that is, for which there are only nonassignable
(chance) causes of variability present. Then the control chart will be more
sensitive to changes over time that may be due to assignable causes such as a
new source of pollution, sampling or measurement biases, seasonal cycles,
trends in mean concentrations, or outliers. If subgroups consist of data collected
over several months, the variability within subgroups may be large due to
seasonal effects. This seasonal variation will cause the control limits to be more
widely spaced, so only very extreme outliers or very large shifts in mean or
variance may be detected.

The definition of a rational subgroup is somewhat subjective, since it depends
on one’s concept of the model representing a controlled situation. Also, a series
of data may consist of segments that are considered to represent an in control
situation and other segments that are out of control. The latter segments are
not used when estimating the control limits on the control chart. '

The number of data in each rational subgroup should be as large as possible
while still maintaining nonassignable variability within subgroups. The number
of subgroups, k, should also be as large as possible with the warnings that
there should be no outliers within subgroups and no trends over time in subgroup
means or within subgroup variances. Tests for outliers may be applied to
historical subgroups, and trends may be identified by simple time plots of data
or by statistical tests. Techniques for detecting trends and estimating their mag-
nitude are discussed in Chapters 16 and 17.

For 24-h air quality data, Nelson, Armentrout, and Johnson (1980) suggest
that each data set contain between 4 and 15 data and that at least 10 to 15
such data sets be available. They also suggest that the chosen time period (e.g.,
week or month) should relate to the National Ambient Air Quality Standards
(NAAQS) of interest. They cite the example of using months or quarters for
24-h TSP, SO,, and NO, data collected at 6- or 12-day intervals.

15.6.3 Construction of Control Charts

The information needed from historical data sets to construct control charts for
means, ranges and standard deviations is

e .



196 Outlier Detection and Control Charts

Number of Sample
Data Set Data in the Sample Sample Standard
(Subgroup) Data Set Mean Range Deviation
i n; X; R; S
1 n; X; R, 5\
2 n, X, R, S5
k ny Xi R, S

The formulas for computing the center line and control limits for means
control charts are given in Table 15.4, while those for range and standard
deviation charts are in Table 15.5. Table 15.6 defines the quantities used in
Tables 15.4 and 15.5.

The value of the constants d,, ds;, and ¢, depend on n; and are given in
Table A17 for n; from 2 to 25. The derivation and meaning of these constants
is discussed by Burr (1976, Chapter 5) and American Society for Testing and
Materials (1976). They were derived under the assumption that the data are
normally distributed.

The quantity Z, in the limit formulas is usually set equal to 2 or 3, although
other values can be used. If the data are normally distributed, we find from
Table Al that, for a process in control, the probability of a plotted point falling
outside the Z, = 2 limit lines is 0.0456 (about 1 chance in 20). This probability
is 0.0026 when Z, = 3 is used (about three changes in 1000). The Z, =2
line might be used as a ‘‘warning’’ line, whereas the Z, = 3 line could be
used to indicate action of some kind.

Although environmental data are frequently nonnormally distributed, control
charts constructed under the assumption of normal data are still useful for
indicating when the measurements are not likely.to be from the same distribution

Table 15.4 Formulas for Control Charts for Means

Equal n; Unequal n;
k
1 k _ z ni-l
Center line i= % 2 % =
i=1 Z "
i=1
Control limits”
. Z,R . Z,R
n, < 10 X + x
Jn Vi,
., A -,
n = X e X —=
Vn Vi,

Source: Formulas from American Society for Testing and Materials, 1976. Formulas are defined
in Table 15.6.

“Control limits computed using 5, are appropriate for any subgroup size n; = 2. Control limits
using R, are easier to compute but are less efficient than those computed with 5, if most n; >
10.

n o 1
e 1 dy; ki=1cy

dy; and d,; are constants from Table A17 that depend on n;. ¢,; = 1 if n; > 25.




261

Table

15.5 Formulas for Range and Standard Deviation Control Charts

Equal n, Unequal nf
Center line
I . _
Range: Use when n; < 10 R =2 Z R Ry = dyR,
i=1
Standard . _1_ i
deviation: Use when n, > 10 S ERA S Sa = Caiy
Control limits®
- Z.d. _ Z ds;
Range: Use when n; < 10 R(14+ -L3> Ry (1t Lot
d, dy;
Standard 1- 2
deviation: Use when n; > 10 3 [1 + Z, “]

a

Source: Formulas from American Society for Testing and Materials, 1976.

“Formulas for R, and §, are given in Table 15.4. d,, ds, and ¢, are constants from Table Al7 that depend on n,.
®Control limits computed using § or §,; are appropriate for any subgroup size n, = 2. Limits computed using R or R, are
simpler to compute but are less efficient than those computed with § or 5,; if most n; > 10.

Sy
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Table 15.6 Definition of Quantities Used in the Control Chart Formulas in Tables 15.4 and 15.5

2 5'3"xlxué\’® S ox

Sai

dZ) d31 Cy

number of historical data sets (subgroups)
number of data in the ith subgroup

2 if 2-sigma control limit lines are desired
= 3 if 3-sigma control limit lines are desired

= grand average of all data over the k subgroups
= average range for the k subgroups _ _
= estimator of the population standard deviation within subgroups when all n; are not equal; R, reduces to R/d, when all n; are equal

= approximate expression for the average range at time i when all n; are not equal. R;; reduces to R when all n, are equal

= average standard deviation for the k subgroups
= estimator of the population standard deviation within subgroups when all »; are not equal; 5,

reduces to 5/c, when all n; are equal
= approximate expression for the average standard deviation at time i when all

I

n; are not equal. 5y, reduces to 5 when n; > 25 for each of the k subgroups or when all n; are equal
= correction factors to improve the accuracy of the estimators; these factors
(in Table A17) are appropriate when the data are normally distributed
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as in the past. Control charts are not constructed for the purpose of making
precise probability statements. They are constructed as a guide for when
investigative action is needed. If the data are known or suspected of being
lognormally distributed, then control charts should be constructed with logarithms
of the data in the formulas in Tables 15.4 and 15.5. Alternatively, control chart
limits in the original (untransformed) scale can be constructed for lognormal
data by the methods of Morrison (1958) or Ferrell (1958).

EXAMPLE 15.2

Suppose total suspended particulate (TSP) air measurements have
been taken for several months at a site and that control charts are
desired to look for outliers and changes in the mean and the standard
deviation over time. The first step is to see if historical data sets
indicate that the population is homogeneous, that is, to see if the
TSP time process is in control. This step is done by constructing a
control chart with the historical data.

For illustration purposes we use TSP data listed by Nelson,
Armentrout, and Johnson (1980, Table 3-11, Site 14) that were
collected every sixth day (with occasional missing values) for 12
months at a particular site. These data are listed in Table 15.7. The
observations taken within a month are considered to be a rational
subgroup. For illustration purposes we use the first 7 months of data
to construct control charts for the mean X; and range R;. The reader
is asked to construct the standard deviation control chart in Exercise
15.2. :

The values of n;, X;, R;, and s; for the subgroups are given in
Table 15.7. Using the first 7 months of data, we compute in Table
15.8 the center line and control limits for the mean and range control
charts, using the formulas in Tables 15.4 and 15.5. The Z, = 2
and 3 limit lines. are drawn in Figures 15.3 and 15.4 and the means
and ranges plotted for the 12-month period.

We see from Figure 15.3 that X falls just outside the 2-sigma
limit, and X; and X, are very close to the limit. However, no Xx;

Table 15.7 TSP Measurements (ug/m®) Taken at Six-Day Intervals at a Site

Subgroup TSP Concentrations Mean Standard

(month) n; (ug/m® X; Range R; Deviation s;
i 4 31, 34, 13, 40 29.5 27 11.62
2 5 49, 19, 79, 39, 51 47.4 60 21.74
Historical 3 5 46, 72, 49, 72, 33 54.4 39 17.16
data 4 4 18, 24, 24, 47 28.2 29 12.82
5 5 32, 66, 28, 68, 74 53.6 46 21.79
6 5 83, 80, 37, 69, 55 64.8 46 19.03
7 2 28, 51 39.5 23 16.26
8 5 42, 53, 56, 129, 64 68.8 87 34.56
9 5 46, 46, 57, 26, 41 43.2 31 11.26
10 5 41, 90, 31, 63, 37 52.4 59 24.24
i1 5 69, 108, 37, 47, 43 60.8 71 29.02
12 5 26, 25, 45, 39, 23 31.6 22 9.79

Source: After Nelson, Armentrout, and Johnson, 1980, Table 3-11, Site 14.
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Table 15.8 Computations for Means and Range Control Charts Using the

First Seven Subgroups of Data in Table 15.7

A. Means Control Chart

= b [429.5) + 5@7.4) + < + 2(39.5)] = 47
] 27 60 23
=1 (=" —_— e — ) = B
Ry =3 (2.059 * 2326 " 1.128> 18.5

Limit Lines ¥ + Z,R,/Nn;

zZ,=2 Z, =3
Center Line ’ r
Months n; R, % Lower Upper Lower Upper
1,4 4 18.5 47 28 66 19 75
2,3,5,6 5 18.5 47 30 64 22 72
7 2 18.5 47 21 73 7.7 86
B. Range Control Chart
Limit Lines Ry (1 t Z,dy/dy)
Center Line Z, =2 Z,=3
Months n; dy; ds; Ry = dyR, Lower Upper Lower Upper
1,4 4 2.059  0.880 38.2 5.5 71 0 87
2,3,5,6 5 2.326  0.864 43.1 11 75 0 91
7 2 1.128  0.853 20.9 0 52 0 68

15.6

exceeds the 3-sigma limit. These results show that the average
monthly TSP concentrations can deviate substantially from the 7-
month average, but no wild swings were present during that time
period. From Figure 15.4 we see that none of the R; during the first
7 months fall outside the 2-sigma limits. Taken together, these results
suggest that the control charts constructed during the first 7 months
of data will be useful for evaluating future TSP data sets.

Plotting the next 5 months of X; and R; on the 2 control charts,
we see that both X3 and Ry exceed their 2-sigma limits and Xx,; and
R, are very close to their 2-sigma limits. Hence the data for month
8 and possibly month 11 may contain outliers. Considering the full
12 months of data in the 2 control charts, we see that there appears
to be no evidence for a permanent shift in either mean or range over
the year. )

Control charts should be updated periodically when there is no
evidence of a trend or a permanent shift in mean or range. In this
example it would be appropriate to treat the full 12 months of data
as a new historical data set and to recompute the center line and
limits for the 2 control charts. These values could then be used
during the coming year to look for outliers and changes.

4 Seasonality

When mean pollution levels fluctuate or cycle over time, this component of
variation must be properly handled when constructing control charts. Since the

|
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Figure 15.3 Means control chart for the TSP data in Table 15.7.
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Figure 15.4 Range control chart for the TSP data in Table 15.7.
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width between control limits is determined by only the within-group (short-
term) variability, seasonal changes in mean level can cause plotted points to
fall outside the control limits and give a false indication of outliers or changes
in mean level due to some activity of man.

If the historical time series of data is long enough so that a number of full
cycles are present, a separate control chart could be constructed for different
parts of the cycle. For example, if data are high in summer and low in winter,
separate control charts for the two seasons could be constructed.

If the historical time series data is of short duration and the magnitude of
the cycles is not too great, a moving-average control chart could be used. Hunt,
Clark, and Goranson (1978) describe such a control chart applied to 24-h air
pollution measurements of TSP, SO,, and NO,. The rational subgroup was the
five air measurements taken within a month. The averages and ranges plotted
on mean and range control charts were computed with the three previous monthly
averages and ranges. With each new month the control limits changed, because
the oldest month was dropped and the latest (past) month added when computing
the limits, to look for outliers in the present month. Hunt, Clark, and Goranson
(1978) developed computer software to perform these calculations.

A third method for handling seasonality is to estimate the seasonal cycles
and remove them from the data, that is, to construct the control chart on the
residuals that remain after the cycle has been removed. This method is similar
to that applied by Berthouex, Hunter, and Pallesen (1978) to sewage treatment
plant data discussed in Section 15.6.1. If a long time series of data is available,
then Box-Jenkins modeling techniques may be used to find a suitable model for
the data, one for which the residuals from the model are normal, independent,
of mean zero, and of constant variance. This model could be more complicated
than a simple seasonal cycle. If the model is appropriate for the next year, the
control chart constructed by using the residuals could be used to evaluate whether
outliers or shifts in mean levels occur during that year.

15.7 SUMMARY

This chapter considered several methods for identifying outliers—that is,
measurements that are unusual with respect to the patterns of variability followed
by the bulk of the data. In addition, methods are given for constructing control
charts to detect outliers or changes in the process mean level over time. To put
these techniques in perspective, we note that statistical tests can identify unusual
measurements, but knowledge of the measurement process itself in combination
with professional judgment must be relied upon to interpret the outliers identified
by statistical tests. The techniques described in this chapter are important, since
increasing attention is being directed to rigorous control of quality in the
collection, handling, laboratory analyses, and data reduction of pollution data.

EXERCISES

15.1 Use Rosner’s procedure to test the null hypothesis that the n = 55 TSP
data in Table 15.7 are from a normal distribution. Let the alternative
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hypothesis be that there are at most three outliers present. Test at the «
= 0.05 significance level.

15.2 Using the TSP data for the first 7 months given in Table 15.7, construct
a standard deviation control chart and plot s,, s,, * * + , 5,, on the chart.
What do you conclude?

ANSWERS
15.1 Using the data in Table 15.7, we compute
Ay
. Ry iy = (x =
i n—i x 5,0 x® [« — x®|/s,@ 0.05)
0 55 49.0 22.9 129 3.49 3.165
1 54 47.5 20.3 108 2.98 3.155
2 53 46.4 18.6 90 2.34 3.150
Since R, 3 < 3.150 and R, , < 3.155, we cannot reject the null hypothesis
of no outliers versus the alternative hypothesis of 2 or 1 outlier,
respectively. Since R,; > 3.165, we reject the null hypothesis and
conclude that datum 129 is an outlier from the assumed normal distribution.
15.2 5 = 1]11.62 + 21.74 + 17.16
' ' 7009213 " 0.94 ' 094
12.82 + 21.79 + 19.03
0.9213  0.94 0.94
16.26 :
= 18.81
0.7979] 8.8164
Sy [1 + Zv(3 - ca)/ck;
Center Line 5 =2 %=3
Month n; Cu AT 52 = Cay Lower  Upper Lower  Upper
1,4 4 09213 04221 17.3 2.7 32 0 39
2,3,5,6 5 094 0.3630 17.7 4.8 31 0 37
7 2 0.7979 0.7555 15.0 0 38 0 49

Conclusion: Sg exceeds the upper 2-sigma limit, and s, is slightly less
than that limit. These same results were obtained by using the range
control chart (Example 15.2).




16 Detecting and
Estimating Trends

An important objective of many environmental monitoring programs is to detect
changes or trends in pollution levels over time. The purpose may be to look
for increased environmental pollution resulting from changing land use practices
such as the growth of cities, increased erosion from farmland into rivers, or
the startup of a hazardous waste storage facility. Or the purpose may be to
determine if pollution levels have declined following the initiation of pollution
control programs.

The first sections of this chapter discuss types of trends, statistical complexities
in trend detection, graphical and regression methods for detecting and estimating
trends, and Box-Jenkins time series methods for modeling pollution processes.
The remainder of the chapter describes the Mann-Kendall test for detecting
monotonic trends at single or multiple stations and Sen’s (1968b) nonparametric
estimator of trend (slope). Extensions of the techniques in this chapter to handle
seasonal effects are given in Chapter 17. Appendix B lists a computer code that
computes the tests and trend estimates discussed in Chapters 16 and 17.

16.1 TYPES OF TRENDS

Figure 16.1 shows some common types of trends. A sequence of measurements
with no trend is shown in Figure 16.1(a). The fluctuations along the sequence
are due to random (unassignable) causes. Figure 16.1(b) illustrates a cyclical
pattern wih no long-term trend, and Figure 16.1(c) shows random fluctuations
about a rising linear trend line. Cycles may be caused by many factors including
seasonal climatic changes, tides, changes in vehicle traffic patterns during the
day, production schedules of industry, and so on. Such cycles are not ‘‘trends’’
because they do not indicate long-term change. Figure 16.1(d) shows a cycle
with a rising long-term trend with random fluctuation about the cycle.

Frequently, pollution measurements taken close together in time or space are
positively correlated, that is, high (low) values are likely to be followed by
other high (low) values. This distribution is illustrated in Figure 16.1(e) for a
rising trend but can occur for the other situations in Figure 16.1.

Figure 16.1(f) depicts a random sequence with a short-lived impulse of
pollution. A permanent step change is illustrated in Figure 16.1(g). This latter
type could be due to a new pollution abatement program, such as a water
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:

(e) TREND + NON-RANDOM

CONCENTRATION

() RANDOM WITH IMPULSE

5

(g) STEP CHANGE + RANDOM

Figure 16.1 Types of time series.

(h) RANDOM FOLLOWED
BY TREND




206 Detecting and Estimating Trends

treatment plant. Finally, a sequence of random measurements fluctuating about
a constant level may be followed by a trend as shown in Figure 16.1¢(h). We
concentrate here on tests for detecting monotonic increasing or decreasing trends
as in (c), (d), (e), and (h).

16.2 STATISTICAL COMPLEXITIES

The detection and estimation of trends is complicated by problems associated
with characteristics of pollution data. In this section we review these problems,
suggest approaches for their alleviation, and reference pertinent literature for
additional information. Harned et al. (1981) review the literature dealing with
statistical design and analysis aspects of detecting trends in water quality. Munn
(1981) reviews methods for detecting trends in air quality data.

16.2.1 Changes in Procedures

A change of analytical laboratories or of sampling and/or analytical procedures
may occur during a long-term study. Unfortunately, this may cause a shift in
the mean or in the variance of the measured values. Such shifts could be
incorrectly attributed to changes in the underlying natural or man-induced
processes generating the pollution.

When changes in procedures or laboratories occur abruptly, there may not
be time to conduct comparative studies to estimate the magnitude of shifts due
to these changes. This problem can sometimes be avoided by preparing duplicate
samples at the time of sampling: one is analyzed and the other is stored to be
analyzed if a change in laboratories or procedures is introduced later. The
paired, old-new data on duplicate samples can then be compared for shifts or
other inconsistencies. This method assumes that the pollutants in the sample do
not change while in storage, an unrealistic assumption in many cases.

16.2.2 Seasonality

The variation added by seasonal or other cycles makes it more difficult to detect
long-term trends. This problem can be alleviated by removing the cycle before
applying tests or by using tests unaffected by cycles. A simple nonparametric
test for trend using the first approach was developed by Sen (1968a). The
seasonal Kendall test, discussed in Chapter 17, uses the latter approach.

16.2.3 Correlated Data

Pollution measurements taken in close proximity over time are likely to be
positively correlated, but most statistical tests require uncorrelated data. One
approach is to use test statistics developed by Sen (1963, 1965) for dependent
data. However, Lettenmaier (1975) reports that perhaps several hundred mea-
surements are needed for their validity. Lettenmaier (1976) uses the concept of
effective independent sample size to obtain adjusted critical values for the
Wilcoxon rank sum test for a step trend and for Spearman’s rho correlation test
for a linear trend. Montgomery and Reckhow (1984) illustrate his procedure
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and provide tables of adjusted critical values for the Wilcoxon rank sum and
Spearman tests. Their paper summarizes the latest statistical techniques for trend
detection.

16.2.4 Corrections for Flow

The detection of trends in stream water quality is more difficult when concen-
trations are related to stream flow, the usual situation. Smith, Hirsch, and Slack
(1982) obtain flow-adjusted concentrations by fitting a regression equation to
the concentration-flow relationship. Then the residuals from regression are tested
for trend by the seasonal Kendall test discussed in Chapter 17. Harned, Daniel,
and Crawford (1981) illustrate two alternative methods, discharge compensation
and discharge-frequency weighting. Methods for adjusting ambient air quality
levels for meteorological effects are discussed by Zeldin and Meisel (1978).

16.3 METHODS
16.3.1 Graphical

Graphical methods are very useful aids to formal tests for trends. The first step
is to plot the data against time of collection. Velleman and Hoaglin (1981)
provide'a computer code for this purpose, which is designed for interactive use
on a computer terminal. They also provide a computer code for ‘‘smoothing™
time series to point out cycles and/or long-term trends that may otherwise be
obscured by variability in the data.

Cumulative sum (CUSUM) charts are also an effective graphical tool. With
this method changes in the mean are detected by keeping a cumulative total of
deviations from a reference value or of residuals from a realistic stochastic
model of the process. Page (1961, 1963), Ewan (1963), Gibra (1975), Wetherill
(1977), Berthouex, Hunter, and Pallesen (1978), and Vardeman and David
(1984) provide details on the method and additional references.

16.3.2 Regression

If plots of data versus time suggest a simple linear increase or decrease over
time, a linear regression of the variable against time may be fit to the data. A
t test may be used to test that the true slope is not different from zero; see,
for example, Snedecor and Cochran (1980, p. 155). This ¢ test can be misleading
if seasonal cycles are present, the data are not normally distributed, and/or.the
data are serially correlated. Hirsch, Slack, and Smith (1982) show that in these
situations, the 7 test may indicate a significant slope when the true slope actually
is zero. They also examine the performance of linear regression applied to
deseasonalized data. This procedure (called seasonal regression) gave a t test
that performed well when seasonality was present, the data were normally
distributed, and serial correlation was absent. Their results suggest that the
seasonal Kendall test (Chapter 17) is preferred to the standard or seasonal
regression ¢ tests when data are skewed, cyclic, and serially correlated.

—d

e
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16.3.3 Intervention Analysis and
Box- Jenkins Models

If a long time sequence of equally spaced data is available, intervention analysis
may be used to detect changes in average level resulting from a natural or man-
induced intervention in the process. This approach, developed by Box and Tiao
(1975), is a generalization of the autoregressive integrated moving-average
(ARIMA) time series models described by Box and Jenkins (1976). Lettenmaier
and Murray (1977) and Lettenmaier (1978) study the power of the method to
detect trends. They emphasize the design of sampling plans to detect impacts
from polluting facilities. Examples of its use are in Hipel et al. (1975) and Roy
and Pellerin (1982).

Box-Jenkins modeling techniques are powerful tools for the analysis of time
series data. McMichael and Hunter (1972) give a good introduction to Box-
Jenkins modeling of environmental data, using both deterministic and stochastic
components to forecast temperature flow in the Ohio River. Fuller and Tsokos
(1971) develop models to forecast dissolved oxygen in a stream. Carlson,
MacCormick, and Watts (1970) and McKerchar and Delleur (1974) fit Box-
Jenkins models to monthly river flows. Hsu and Hunter (1976) analyze annual
series of air pollution SO, concentrations. McCollister and Wilson (1975) forecast
daily maximum and hourly average total oxidant and carbon monoxide concen-
trations in the Los Angeles Basin. Hipel, McLeod, and Lennox (1977a, 1977b)
illustrate improved Box-Jenkins techniques to simplify model construction.
Reinsel et al. (1981a, 1981b) use Box-Jenkins models to detect trends in
stratospheric ozone data. Two introductory textbooks are McCleary and Hay
(1980) and Chatfield (1984). Box and Jenkins (1976) is recommended reading
for all users of the method.

Disadvantages of Box-Jenkins methods are discussed by Montgomery and
Johnson (1976). At least 50 and preferably 100 or more data collected at equal
(or approximately equal) time intervals are needed. When the purpose is
forecasting, we must assume the developed model applies to the future. Missing
data or data reported as trace or less-than values can prevent the use of Box-
Jenkins methods. Finally, the modeling process is often nontrivial, with a
considerable investment in time and resources required to build a satisfactory
model. Fortunately, there are several packages of statistical programs that contain
codes for developing time series models, including Minitab (Ryan, Joiner, and
Ryan 1982), SPSS (1985), BMDP (1983), and SAS (1985). Codes for personal
computers are also becoming available.

16.4 MANN-KENDALL TEST

In this section we discuss the nonparametric Mann-Kendall test for trend (Mann,
1945; Kendall, 1975). This procedure is particularly useful since missing values
are allowed and the data need not conform to any particular distribution. Also,
data reported as trace or less than the detection limit can be used (f it is
acceptable in the context of the population being sampled) by assigning them
a common value that is smaller than the smallest measured value in the data
set. This approach can be used because the Mann-Kendall test (and the seasonal
Kendall test in Chapter 17) use only the relative magnitudes of the data rather
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than their measured values. We note that the Mann-Kendall test can be viewed
as a nonparametric test for zero slope of the linear regression of time-ordered
data versus time, as illustrated by Hollander and Wolfe (1973, p. 201).

16.4.1 Number of Data 40 or Less

If n is 40 or less, the procedure in this section may be used. When n exceeds
40, use the normal approximation test in Section 16.4.2. We begin by considering
the case where only one datum per time period is taken, where a time period
may be a day, week, month, and so on. The case of multiple data values per
time period is discussed in Section 16.4.3.

The first step is to list the data in the order in which they were collected

over time: x;, X, . . . , x,, where x; is the datum at time ;. Then determine
the sign of all n(n — 1)/2 possible differences X; — X, where j > k. These
differences are x, — Xy, X3 — Xj, . . ., Xy — Xy, X3 — Xp, X4 — Xo, o o ., X,

~ X2, X, — X,_;. A convenient way of arranging the calculations is shown
in Table 16.1.

Let sgn(x; — x,) be an indicator function that takes on the values 1, 0, or
—1 according to the sign of x; — x;:

Sgn(xj - xk) = 1 if .x_" - X >0

= 0 if xj'_xk=0

= —1 lf xj' — X < 0 16-1
Then compute the Mann-Kendall statistic
n—1 n :
S= 2 2 sgn(x; — x;) 16.2
k=1 j=k+1

which is the number of positive differences minus the number of negative
differences. These differences are easily obtained from the last two columns of
Table 16.1. If S is a large positive number, measurements taken later in time
tend to be larger than those taken earlier. Similarly, if S is a large negative
number, measurements taken later in time tend to be smaller. If » is large, the
computer code in Appendix B may be used to compute S. This code also
computes the tests for trend discussed in Chapter 17.

Suppose we want to test the null hypothesis, H,, of no trend against the
altemmative hypothesis, H,, of an upward trend. Then H, is rejected in favor of
H, if S is positive and if the probability value in Table A18 corresponding to
the computed S is less than the a priori specified « significance level of the
test. Similarly, to test Hy against the alternative hypothesis H, of a downward
trend, reject Hy and accept H, if S is negative and if the probability value in
the table corresponding to the absolute value of S is less than the a priori
specified o value. If a two-tailed test is desired, that is, if we want to detect
either an upward or downward trend, the tabled probability level corresponding
to the absolute value of § is doubled and H, is rejected if that doubled value
is less than the a priori « level.

EXAMPLE 16.1

We wish to test the null hypothesis H,, of no trend versus the
alternative hypothesis, H,, of an upward trend at the o = 0.10

o s i
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Table 16.1 Differences in Data Values Needed for Computing the Mann-Kendall Statistic S to Test

for Trend
Data Values Listed in the Order Collected Over Time
No. of + No. of —
X, X X3 X4 s Xy~ X, Signs Signs

X2 — X X3 — X Xs — X Kot — X Xp = X
X3~ X X4 — X2 Xp—1 — X2 Xy, — X2
Xy — X3 o Xp-1 — X3 Xn T X3

Xp—1 = Xp-2 Xp = Xn-2

Xy = Xp-

S =

sum of . (sum of >
+ signs — signs
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Table 16.2 Computation of the Mann-Kendall Trend Statistic S for the Time
Ordered Data Sequence 10, 15, 14, 20

Time 1 2 3 4 No. of + No. of ~
Data 10 15 14 20 Signs Signs

15-10 14 -10 20-10 3 0
14-15 20 -15 1 1
20 — 14 1 0

s = 5 - 1=4

significance level. For ease of illustration suppose only 4 measure-
ments are collected in the following order over time or along a line
in space: 10, 15, 14, and 20. There are 6 differences to consider:
15 - 10, 14 — 10, 20 — 10, 14 — 15, 20 — 15, and 20 — 14.
Using Eqgs. 16.1 and 16.2, we obtain $ = +1 + 1 + 1 — 1 + 1
+ 1 = +4, as illustrated in Table 16.2. (Note that the sign, not
the magnitude of the difference is used.) From Table A18 we find
for n = 4 that the tabled probability for § = +4 is 0.167. This
number is the probability of obtaining a .value of § equal to +4 or
larger when n = 4 and when no upward trend is present. Since this
value is greater than 0.10, we cannot reject H,.

If the data sequence had been 18, 20, 23, 35, then § = +6, and
the tabled probability is 0.042. Since this value is less than 0.10,
we reject Hy and accept the alternative hypothesis of an upward
trend.

Table A18 gives probability values only for n < 10. An extension
of this table up to n = 40 is given in Table A.21 in Hollander and
Wolfe (1973).

16.4.2 Number of Data Greater Than 40

When n is greater than 40, the normal approximation test described in this
section is used. Actually, Kendall (1975, p. 55) indicates that this method may
be used for n as small as 10 unless there are many tied data values. The test
procedure is to first compute S using Eq. 16.2 as described before. Then
compute the variance of S by the following equation, which takes into account
that ties may be present:

q

VAR(S) = % {n(n - D@n+5) - El L, — DQt, + 5)} 16.3

where g is the number of tied groups and 1, is the number of data in the pth
group. For example, in the sequence {23, 24, trace, 6, trace, 24, 24, trace,
23} we have g = 3, 1; = 2 for the tied value 23, 1, = 3 for the tied value
24, and #; = 3 for the three trace values (considered to be of equal but unknown
value less than 6).

Then S and VAR(S) are used to compute the test statistic Z as follows:

S—-1 .
:W if §$>0
=0 if $§=0
S+1
if S<0 16.4

~ [VARG)]'?

1 b e
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Figure 16.2 Concentrations of 28U in ground water in well E at the former St.
Louis Airport storage site for January 1981 through January 1983 (after Clark
and Berven, 1984).

A positive (negative) value of Z indicates an upward (downward) trend. If the
null hypothesis, Hy, of no trend is true, the statistic Z has a standard normal
distribution, and hence we use Table Al to decide whether to reject Hy. To
test for either upward or downward trend (a two-tailed test) at the « level of
significance, H, is rejected if the absolute value of Z is greater than Z, _ _,
where Z, _ ,, is obtained from Table Al. If the alternative hypothesis is for an
upward trend (a one-tailed test), Hy is rejected if Z (Eq. 16.4) is greater than
Z, _,- We reject Hy in favor of the alternative hypothesis of a downward trend
if Z is negative and the absolute value of Z is greater than Z,_ .. Kendall
(1975) indicates that using the standard normal tables (Table A1l) to judge the
statistical significance of the Z test will probably introduce little error as long
as n = 10 unless there are many groups of ties and many ties within groups.

EXAMPLE 16.2

Figure 16.2 is a plot of n = 22 monthly ***U concentrations x,, x,,
X3, . . . , Xp obtained from a groundwater monitoring well from
January 1981 through January 1983 (reported in Clark and Berven,
1984). We use the Mann-Kendall procedure to test the null hypothesis
at the @ = 0.05 level that there is no trend in *®*U groundwater
concentrations at this well over this 2-year period. The alternative
hypothesis is that an upward trend is present.

There are n(n — 1)/2 = 22(21)/2 = 231 differences to examine
for their sign. The computer code in Appendix B was used to obtain
S and Z (Eqs. 16.2 and 16.4). We find that S = +108. Since there
are 6 occurrences of the value 20 and 2 occurrences of both 23 and
30, wehave g = 3,4 = 6,and t, = 1, = 2. Hence, Eq. 16.3 gives




Mann-Kendall Test 213

VAR(S) = & [22Q21)(44 + 5)

—6(5)(12 + 5) — 2(1)4 + 5) — 2(H@4 + 5)]
1227.33

or [VAR(S)]"? = 35.0. Therefore, sirice § > 0, Eq. 16.4 gives Z
= (108 — 1)/35.0 = 3.1. From Table Al we find Zoos = 1.645.
Since Z exceeds 1.645, we reject Hy and accept the alternative
hypothesis of an upward trend. We note that the three missing values
in Figure 16.2 do not enter into the calculations in any way. They
are simply ignored and constitute a regrettable loss of information
for evaluating the presence of trend.

16.4.3 Multiple Observations per Time
Period

When there are multiple observations per time period, there are two ways to
proceed. First, we could compute a summary statistic, such as the median, for
each time period and apply the Mann-Kendall test to the medians. An alternative
approach is to consider the n; > 1 multiple observations at time i (or time
period i) as ties in the time index. For this latter case the statistic S is still
computed by Eq. 16.2, where n is now the sum of the n;, that is, the total
number of observations rather than the number of time periods. The differences
between data obtained at the same time are given the score 0 no matter what
the data values may be, since they are tied in the time index.

When there are multiple observations per time period, the variance of § is
computed by the following equation, which accounts for ties in the time index:

g
VAR(S) = 1—18 [n(n —D@R+ ) = X6, - D, +9)
K
- qgl ugug — 1)Qu, + 5)}

p

h
ot = DG, — 2) EI ug(ug — 1)(u, — 2)

* 9nn - DN — 2)

8

h
20~ 1) % uy(u, — 1)
p=1 g=1

16.5
2n(n — 1)
where g and 1, are as defined following Eq. 16.3, k is the number of time
periods that contain multiple data, and u, is the number of multiple data in the
qth time period. Equation 16.5 reduces to Eq. 16.3 when there is one observation
per time period.

Equations 16.3 and 16.5 assume all data are independent and, hence,
uncorrelated. If observations taken during the same time period are highly
correlated, it may be preferable to apply the Mann-Kendall test to the medians
of the data in each time period rather than use Eq. 16.5 in Eq. 16.4.
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Figure 16.3 An artificial data set to illustrate the Mann-Kendall test for trend
when ties in both the data and time are present.

EXAMPLE 16.3

To illustrate the computation of S and VAR(S), consider the following
artificial data set:

(concentration, time period)
= (10, ), 22, 1), 21, 1), (30, 2), (22, 3), (30, 3), (40, 4), (40, 5)

as plotted in Figure 16.3. There are 5 time periods and n = 8 data.
To illustrate computing S, we lay out the data as follows:

Time Period; 1 1 1 2 3 3 4 5
Data : 100 22 21 30 22 30 40 40

We shall test at the « = 0.05 level the nuil hypothesis, H,, of no
trend versus the alternative hypothesis, H,, of an upward trend, a
one-tailed test.

Now, look at all 8(7)/2 = 28 possible data pairs, remembering
to give a score of 0 to the 4 pairs within the same time index. The
differences are shown in Table 16.3. Ignore the magnitudes of the
differences, and sum the number of positive and negative signs to
obtain § = 19. It is clear from Figure 16.3 that there are g = 3
tied data groups (22, 30, and 40) with L = = 1t3 = 2. Also,
there are h = 2 time index ties (times 1 and 3) with 4, = 3 and
u, = 2. Hence, Eq. 16.5 gives

VAR(S) = % [8(1)(16 + 5) — 3(2)(1)@ + 5) — 32)(6 + 5)

BAMIBE) +2(1)
2(8)(7)

—2(H)@E + 5] +0+

= 58.1
or [VAR(S)]'? = 7.6. Hence, Eq. 16.4 gives Z = (19 — 1)/7.6
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Table 16.3 llustration of Computing S for Example 16.3

Time Period 1 1 1 2 3 .3 4 5 Sum of +  Sum of —
Data 10 22 2 30 22 30 40 40 Signs Signs
NC NC +20 +12 420 +30  +30 5 0
NC +8 0 +8 +18 +18 4 0
+9 +1 +9  +19 419 5 0
-8 0 +10  +10 2 1
NC +18  +18 2 0
+10  +10 2 0
0 0 0
s =20 -1
=19

NC = Not computed since both data values are within the same time period.

= 2.4. Referring to Table Al, we find Zy o5 = 1.645. Since Z >
1.645, reject H, and accept the alternative hypothesis of an upward
trend.

16.4.4 Homogeneity of Stations

Thus far only one station has been considered. If data over time have been
collected at M > 1 stations, we have data as displayed in Table 16.4 (assuming
one datum per sampling period). The Mann-Kendall test may be computed for
each station. Also, an estimate of the magnitude of the trend at each station
can be obtained using Sen’s (1968b) procedure, as described in Section 16.5.
When data are collected at several stations within a region or basin, there
may be interest in making a basin-wide statement about trends. A general
statement about the presence or absence of monotonic trends will be meaningful
if the trends at all stations are in the same direction—that is, all upward or all

downward. Time plots of the data at each s
to make visual comparison easier, may indi
possible. In many situations an objective te

tation, preferably on the same graph
cate when basin-wide statements are
sting method will be needed to help

make this decision. In this section we discuss a method for doing this that

Table 16.4 Data Collected over

Time at Multiple Stations

Station |

Sampling Time

Station M

Sampling Time

1 2 K 1 2 K
1 Xin X211 ttt Xkl 1 Xim X2aim e XKim
? X121 X221 T Xk21 2 X(am X22m cet Xe2m
Year :
L Xig Xar1 tt XKL L Xiom XorLm Xxim
Mann-Kendall ,Test S, Su
Z, Zy

M = number of stations
K = number of sampling times per year
L = number of years

Xy = datum for the ith sampling time in the ith year at the jth station

it ot
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makes use of the Mann-Kendall statistic computed for each station. This
procedure was originally proposed by van Belle and Hughes (1984) to test for
homogeneity of trends between seasons (a test discussed in Chapter 17).

To test for homogeneity of trend direction at multiple stations, compute the
homogeneity chi-square statistic, xﬁomog, where

M
2 >2
XI210mog = tholal - Xlzrend = j§l Zj - MZ 16.6

S.

J

Z = ——i
)~ VARG 16.7

S; is the Mann-Kendall trend statistic for the Jth station,

_ 1 M
and Z = Mj§1 Z;

If the trend at each station is in the same direction, then xﬁomog has a chi-
square distribution with M — 1 degrees of freedom (df). This distribution is
given in Table A19. To test for trend homogeneity between stations at the «
significance level, we refer our calculated value of xﬁomog to the « critical value
in Table A19 in the row with M — 1 df. If xﬁomog exceeds this critical value,
we reject the H, of homogeneous station trends. In that case no regional-wide
statements should be made about trend direction. However, a Mann-Kendall
test for trend at each station may be used. If xﬁomog does not exceed the «
critical level in Table A19, then the statistic Xena = MZ? is referred to the
chi-square distribution with 1 df to test the null hypothesis H, that the (common)
trend direction is significantly different from zero.

The validity of these chi-square tests depends on each of the Z; values (Eq.
16.7) having a standard normal distribution. Based on results in Kendall (1975),
this implies that the number of data (over time) for each station should exceed
10. Also, the validity of the tests requires that the Z; be independent. This
requirement means- that the data from different stations must be uncorrelated.
We note that the Mann-Kendall test and the chi-square tests given in this section
may be computed even when the number of sampling times, K, varies from
year to year and when there are multiple data collected per sampling time at
one or more times.

EXAMPLE 16.4

We consider a simple case to illustrate computations. Suppose the
following data are obtained:

Time

1 2 3 4 5

Station 1 10 12 11 15 18
Station 2 10 9 10 8 9

We wish to test for homogeneous trend direction at the M = 2
stations at the o = 0.05 significance level. Equation 16.2 gives S,
=l1+14+1+1-1+1+14+1+1+1=+49—1 =
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8andS2=—1+0—1—1+1—l+0—1—1+1=
2-6= -4, Equation 16.3 gives

5(4)(15
VAR(S)) = % = 16.667 and VAR(S,)

- B@as) - 2(11;(9) ~ 20 _ 14.667

Therefore Eq. 16.4 gives

7 -3
Z, = m =171 and Z, = m = —(.783

Thus
71 - 0.783\?
Xitomog = 1.71% + (—0.783)? - 2 <1+> =131

Referring to the chi-square tables with A7 — | = 1 df, we find the
@ = 0.05 level critical value is 3.84. Since Xfomes < 3.84, we

stations is less than 10.] Xownd = MZ? = 2(0.2148) = 0.43. Since
0.43 < 3.84, we cannot reject the null hypothesis of no trend at
the 2 stations.

We may test for trend at each station using the Mann-Kendal]
test by referring S = 8 and $3 = —4 to Table Al8. The tabled
value for S, = 8 when 5 = 5 is 0.042. Doubling this value to give
a two-tailed test gives 0.084, which is greater than our prespecified
@ = 0.05. Hence, we cannot reject Hy of no trend for station 1 at
the o = 0.05 level. The tabled value for S, = —4 whenn = 5 js
0.242. Since 0.484 > 0.05, we cannot reject Hy, of no trend for
station 2. These results are consistent with the x2,., test before.
Note, however, that station 1 still appears to be increasing over
time, and the reader may confirm it is significant at the o = 0.10
level. This result suggests that this station be carefully watched in
the future.

16.5 SEN’S NONPARAMETRIC
ESTIMATOR OF SLOPE

As noted in Section 16.3.2, if a linear trend is present, the true slope (change
Per unit time) may be estimated by computing the least Squares estimate of the
slope, b, by linear regression methods. However, » computed in this way can
deviate greatly from the true slope if there are gross errors or outliers in the
data. This section shows how to estimate the true slope at a sampling station
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gross data errors or outliers, and it can be computed when data are missing.
Sen’s estimator is closely related to the Mann-Kendall test, as illustrated in the
following paragraphs. The computer code in Appendix B computes Sen’s
estimator.
First, compute the N’ slope estimates, Q, for each station:
Xi

Q=>4

i -

16.8

where x;. and x; are data values at times (or during time periods) i’ and i,
respectively, and where i’ > i; N’ is the number of data pairs for which i’ >
i. The median of these N’ values of Q is Sen’s estimator of slope. If there is
only one datum in each time period, then N' = n(n — 1)/2, where n is the
number of time periods. If there are multiple observations in one or more time
periods, then N’ < n(n — 1)/2, where n is now the total number of observations,
not time periods, since Eq. 16.8 cannot be computed with two data from the
same time period, that is, when i’ = i. If an x; is below the detection limit,
one half the detection limit may be used for x,.

- The median of the N’ slope estimates is obtained in the usual way, as
discussed in ‘Section 13.3.1. That is, the N’ values of Q are ranked from
smallest to largest (denote the ranked values by Q) = Qpy <= - -+ =
Qw -1 < Qwq) and we compute

Sen’s estimator = median slope

= Q[(N'+1)/2] if N'isodd

=3 Qwm + Quv+2n)  if N'is even 16.9

A 100(1 — a)% two-sided confidence interval about the true slope may be
obtained by the nonparametric technique given by Sen (1968b). We give here
a simpler procedure, based on the normal distribution, that is valid for n as
small as 10 unless there are many ties. This procedure is a generalization of
that given by Hollander and Wolfe (1973, p- 207) when ties and/or multiple
observations per time period are present. .

1. Choose the desired confidence coefficient « and find Z, _.5 in Table Al.

2. Compute C, = Z, __,[VAR(S)]'?, where VAR(S) is computed from Egs.
16.3 or 16.5. The latter equation is used if there are multiple observations
per time period.

3. Compute M, = (N' — C))2 and M, = (N’ + C,)/2.

4. The lower and upper limits of the confidence interval are the M;th largest
and (M, + 1)th largest of the N’ ordered slope estimates, respectively.

EXAMPLE 16.5

We use the data set in Example 16.3 to illustrate Sen’s procedure.
Recall that the data are

Time Period 1 1 1 2 3 3 4 5
Data 10 22 21 30 22 30 40 40

There are N’ = 24 pairs for which i’ > i. The values of individual
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Table 16.5 |lllustration of Computing an Estimate of Trend Slope Using Sen’s
(1968b) Nonparametric Procedure (for Example 16.5). Tabled Values Are
Individual Slope Estimates, Q

Time Period 1. 1 1 2 3 3 4 5
Data 10 22 21 30 22 30 40 40
NC NC +20 +6 +10 +10 +7.5
NC +8 0 +4 +6 +4.5
+9 +0.5 +4.5 +6.33 +4.75
-8 0 +5 +3.33
NC +18 +9
+10 +5
0

NC = Cannot be computed since both data values are within the same time period.

slope estimates Q for these pairs are obtained by dividing the
differences in Table 16.3 by i’ — i. The 24 Q values are given in
Table 16.5.

Ranking these Q values from smallest to largest gives

-8,0,0,0,05,3.33, 4,45, 45,475, 5, 5, 6, 6, 6.33, 7.5, 8,9, 9, 10, 10,
10, 18, 20

Since N' = 24 is even, the median of these Q values is the average
of the 12th and 13th largest values (by Eq. 16.8), which is 5.5, the
Sen estimate of the true slope. That is, the average (median) change
is estimated to be 5.5 units per time period.

A 90% confidence interval about the true slope is obtaied as
follows. From Table Al we find Zy o5 = 1.645. Hence,

Co = L.645[VAR(S)]'? = 1.645[58.1]'% = 12.54-

where the value for VAR(S) was obtained from Example 16.3. Since
N’ = 24, we have M; = (24 — 12.54)/2 = 5.73 and M, + 1=
(24 + 12.54)/2 + 1 = 19.27. From the list of 24 ordered slopes
given earlier, the lower limit is found to be 2.6 by interpolating
between the Sth and 6th largest values. The upper limit is similarly
found to be 9.3 by interpolating between the 19th and 20th largest
values.

16.6 CASE STUDY

This section illustrates the procedures presented in this chapter for evaluating
trends. The computer program in Appendix B is used on the hypothetical data
listed in Table 16.6 and plotted in Figure 16.4. These data, generated on a
computer, represent measurements collected monthly at two stations for 48
consecutive months. The model for station Lis x;; = exp [0.83¢, — 0.35] —
1.0, where x;;, is the datum for month i in year [ at station 1. The model used
at station 2 was x;, = exp [0.83¢; — 0.35] — 1.0 + 0.40Gi/12 + I). For
both stations the measurement errors e; were generated to have mean 0 and
variance 1. The data for station 1 are lognormally distributed with no trend,
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Table 16.6 Simulated Monthly Data at Two Stations over a Four-Year Period

NUMBER OF YEARS =4
NUMBER OF STATIONS = 2
NUMBER OF NUMBER OF

STATION DATA POINTS STATION DATA POINTS

1 48 2 48
YEAR MONTH STATION 1 YEAR MONTH STATION 2

1 1 6.00 1 1 5.09
1 2 5.41 1 2 5.07
1 3 4.58 1 3 4.93
1 4 4.34 1 4 4.94
1 5 4.77 1 5 5.15
1 6 4.54 1 6 11.82
1 7 4.50 1 I4 5.48
1 8 5.02 1 8 5.18
1 9 4.38 1 9 5.79
1 10 4.27 1 10 5.11
1 11 4.33 1 11 5.10
1 12 4.33 1 12 5.94
2 13 5.00 2 13 6.91
2 14 5.02 2 14 7.1
2 15 4.14 2 15 5.40
2 16 5.16 2 16 6.77
2 17 6.33 2 17 5.35
2 18 5.49 2 18 6.04
2 19 4.54 2 19 5.45
2 20 6.62 2 20 6.95
2 21 4.64 2 21 5.54
2 22 4.45 2 22 5.71
2 23 4.57 2 23 6.14
2 24 4.09 2 24 7.13
3 25 5.06 3 25 5.80
3 26 4.83 3 26 5.91
3 27 - 4.92 3 27 5.88
3 28 6.02 3 28 7.21
3 29 4.77 3 29 8.29
3 30 5.03 3 30 6.00
3 31 7.15 3 31 6.28
3 32 4.30 3 32 5.69
3 33 4.15 3 33 6.52
3 34 5.13 3 34 6.27
3 35 5.28 3 35 6.46
3 36 4.31 3 36 6.94
4 37 6.53 4 37 6.28
4 38 5.11 4 38 6.74
4 39 4.31 4 39 6.91
4 40 4.64 4 40 7.81
4 41 4.87 4 41 6.53
4 42 4.89 4 42 6.26
4 43 4.92 4 43 7.01
4 44 4.94 4 44 7.42
4 45 4,69 4 45 8.35
4 46 4.50 4 46 6.27
4 47 4.80 4 47 6.69
4 48 4.80 4 48 6.99
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Figure 16.4 Data at two stations each month for four years. Data were simulated
using the lognormal independent model given by Hirsch, Slack, and Smith (1982,
Eq. 14b). Simulated data were obtained by D. W. Engel.

-l
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and the data for station 2 are lognormal with a trend of 0.4 units per year or
0.0333 units per month. These models were among those used by Hirsch, Slack,
and Smith (1982) to evaluate the power of the seasonal Kendall test for trend,
a test we discuss in Chapter 17.

The results obtained from the computer code in Appendix B are shown in
Table 16.7. The first step is to decide whether the two stations have trends in
the same direction. In this example we know it is not so, since one station has
a trend and the other does not. But in practice this a priori information will
not be available.

Table 16.7 shows that the chi-square test of homogeneity (Eq. 16.6) is highly
significant (Xﬁomog = 10.0; computed significance level of 0.002). Hence, we
ignore the chi-square test for trend that is automatically computed by the program
and turn instead to the Mann-Kendall test results for each station. This test for
station 1 is nonsignificant (P value of 0.70), indicating no strong evidence for
trends, but that for station 2 is highly significant. All of these test results agree
with the true situation. Sen’s estimates of slope are 0.002 and 0.041 per month
for stations 1 and 2, whereas the true values are 0.0 and 0.0333, respectively.
The computer code computes 100(1 ~— «)% confidence limits for the true slope
for ¢ = 0.20, 0.10, 0.05, and 0.01. For this example the 95% confidence
limits are —0.009 and 0.012 for station 1, and 0.030 and 0.050 for station 2.

The computer code allows one to split up the 48 observations at each station
into meaningful groups that contain multiple observations. For instance, suppose

Table 16.7 Chi-Square Tests for Homogeneity of Trends at the Two Stations,
and Mann-Kendall Tests for Each Station

HOMOGENEITY TEST RESULTS

PROB. OF A
CHI-SQUARE STATISTICS df LARGER VALUE
TOTAL 23.97558 2 0.000 Trend not equal
HOMOGENEITY 10.03524 1 0.002 at the 2 stations
TREND 13.94034 1 0.000 €— Not meaningful
PROB. OF EXCEEDING
MANN- THE ABSOLUTE VALUE
KENDALL OF THE Z STATISTIC
S z (TWO-TAILED TEST)
STATION SEASON STATISTIC STATISTIC n IFn>10
1 1 45.00 0.39121 48 0.696
2 1 549.00 4.87122 48 0.000

SEN SLOPE
CONFIDENCE INTERVALS

STATION SEASON ALPHA LOWER LIMIT SLOPE UPPER LIMIT
1 1 0.010 -0.013 0.002 0.016
0.050 -0.009 0.002 0.012
0.100 -0.007 0.002 0.011
0.200 -0.005 0.002 0.009
2 1 0.010 0.026 0.041 0.054
0.0s50 0.030 0.041 0.050
0.100 0.032 0.041 0.048
0.200 0.034 0.041 0.046
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Table 16.8 Analyses of the Data in Table 16.6 Considering the Data as
Twelve Multiple Observations in Each of Four Years

NUMBER OF YEARS =4
NUMBER OF SEASONS =1
NUMBER OF STATIONS = 2

HOMOGENEITY TEST RESULTS

PROB. OF A

SOURCE CHI-SQUARE df LARGER VALUE
TOTAL 21.45468 2 0.00
HOMOGENEITY 5.79732 1 0.016
TREND 15.65736 1 0.000

PROB. OF EXCEEDING

MANN- THE ABSOLUTE VALUE
KENDALL OF THE Z STATISTIC
S z (TWO-TAILED TEST)
STATION SEASON STATISTIC STATISTIC n IFn>10
1 1 119.00 1.08623 48 0.277
1 489.00 4.49132 48 0.000
SEN SLOPE

CONFIDENCE INTERVALS

STATION SEASON ALPHA LOWER LIMIT SLOPE UPPER LIMIT
1 1 0.010 -0.120 0.080 0.225
0.050 -0.065 0.080 0.190
0.100 -0.037 0.080 0.176
0.200 -0.014 0.080 0.153
2 1 0.010 0.290 0.467 0.670
0.050 0.353 0.467 0.620
0.100 0.370 0.467 0.600
0.200 0.390 0.467 0.575

we regard the data in this example as 12 multiple data points in each of four
years. Applying the code using this interpretation gives the results in Table
16.8.

The conclusions of the tests are the same as obtained in Table 16.7 when
the data were considered as one time series of 48 single observations. However,
this may not be the case with other data sets or groupings of multiple observations.
Indeed, the Mann-Kendall test statistic Z for station 1 is larger in Table 16.8
than in Table 16.7, so that the test is closer to (falsely) indicating a significant
trend when the data are grouped into years. For station 2 the Mann-Kendall
test in Table 16.8 is smaller than in Table 16.7, indicating the test has less
power to detect the trend actually present. The best strategy appears to be to
not group data unnecessarily. The estimates of slope are now 0.080 and 0.467
per year, whereas the true values are 0.0 and 0.40, respectively.

16.7 SUMMARY

This chapter began by identifying types of trends and some of the complexities
that arise when testing for trend. It also discussed graphical methods for detecting
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and estimating trends, intervention analysis, and problems that arise when using
regression methods to detect and estimate trends.

Next, the Mann-Kendall test for trend was described and illustrated in detail,
including how to handle multiple observations per sampling time (or period).
A chi-square test to test for homogenous trends at different stations within a
basin was also illustrated. Finally, methods for estimating and placing confidence
limits on the slope of a linear trend by Sen’s nonparameter procedure were
given and the Mann-Kendall test on a simulated data set was illustrated. 1

EXERCISES

16.1 Use the Mann-Kendall test to test for a rising trend over time, using the
following data obtained sequentially over time.

Time 1 2 3 4 5 6 7
Data ND 1 ND 3 1.5 1.2 4

Use o = 0.05. What problem is encountered in using Table A18? Use
the normal approximate test statistic Z.

16.2 Use the data in Exercise 16.1 to estimate the magnitude of the trend in
the population. Handle NDs in two ways: (a) treat them as missing
values, and (b) set them equal to one half the detection limit. Assume
the detection limit is 0.5. What method do you prefer? Why?

16.3 Compute a 90% confidence interval about the true slope, using the data
in part (b) of Exercise 16.2.

ANSWERS

16.1 n = 7. The 2 NDs are treated as tied at a value less than 1.1. S =
16 — 4 = 12, Since there is a tie, there is no probability value in Table
Al8 for § = +12, but the probability lies between 0.035 and 0.068.
Using the large sample approximation gives Var(S) = 43.3 and Z =
1.67. Since 1.67 > 1.645, we reject H, of no trend.

16.2 (a) The median of the 10 estimates of slope is 0.23. (b) The median of
the 21 estimates of slope is 0.33.

Pros and Cons: Using one half of the detection limit assumes the
actual measurements of ND values are equally likely to fall anywhere
between zero and the detection limit. One half of the detection limit is
the mean of that distribution. This method, though approximate, is
preferred to treating NDs as missing values.

16.3 From Eq. 16.3, VAR(S) = 44.3. (The correction for ties in Eq. 16.3
is not used because the 2 tied values were originally ND values and were
assigned to be equal.) C, = 10.95, M, = 5, M, + 1 = 17. Therefore,
the limits are 0 and 0.94.
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17 Trends and Seasonality

Chapter 16 discussed trend detection and estimation methods that may be used
when there are no cycles or seasonal effects in the data. Hirsch, Slack, and
Smith (1982) proposed the seasonal Kendall test when seasonality is present.
This chapter describes the seasonal Kendall test as well as the extention to
multiple stations developed by van Belle and Hughes (1984). It also shows how
to estimate the magnitude of a trend by using the nonparametric seasonal Kendall
slope estimator, which is appropriate when seasonality is present. All these
techniques are included in the computer code listed in Appendix B. A computer
code that computes only the seasonal Kendall test and slope estimator is given
in Smith, Hirsch, and Slack (1982).

17.1 SEASONAL KENDALL TEST

If seasonal cycles are present in the data, tests for trend that remove these
cycles or are not affected by them should be used. This section discusses such
a test: the seasonal Kendall test developed by Hirsch, Slack, and Smith (1982)
and discussed further by Smith, Hirsch, and Slack (1982) and by van Belle and
Hughes (1984). This test may be used even though there are missing, tied, or
ND values. Furthermore, the validity of the test does not depend on the data
being normally distributed.

The seasonal Kendall test is a generalization of the Mann-Kendall test. It
was proposed by Hirsch and colleagues for use with 12 seasons (months). In
brief, the test consists of computing the Mann-Kendall test statistic S and its
variance, VAR(S), separately for each month (season) with data collected over
years. These seasonal statistics are then summed, and a Z statistic is computed.
If the number of seasons and years is sufficiently large, this Z value may be
referred to the standard normal tables (Table Al) to test for a statistically
significant trend. If there are 12 seasons (e.g., 12 months of data per year),
Hirsch, Slack, and Smith (1982) show that Table Al may be used as long as
there are at least three years of data for each of the 12 seasons.

Conceptually, the seasonal Kendall test may also be used for other “‘seasons’’
(e.g., four quarters of the year or the three 8-h periods of the day). However,
the degree of approximation of Table Al when there are fewer than 12 seasons _
has not, apparently, been given in the literature. For applications where an’
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\// . Table 17.1 Data for the Seasonal Kendall Test at One Sampling Station
: Season
! 1 2 K
; 1 Xy X1 e Xk
k 2 X2 X322 Tt K2
5 Year : )
R L XL X e XKL
S S, . Sk

M=

LY
§= 25, Var(s’) = --Z. Var(s)

exact test is important, the exact distribution of the seasonal Kendall test statistic
can be obtained on a computer for any combination of seasons and years by
the technique discussed by Hirsch, Slack, and Smith (1982).

Let x; be the datum for the ith season of the Ith year, K the number of
seasons, and L the number of years. The data for a given site (sampling station)
are shown in Table 17.1. The null hypothesis, Hy, is that the x; are independent
of the time (season and year) they were collected. The hypothesis H, is tested
against the alternative hypothesis, H,, that for one or more seasons the data
are not independent of time. '

For each season we use data collected over years to compute the Mann-
Kendall statistic S. Let S, be this statistic computed for season i, that is,

ni—1 ni

;=2 X sgn (xy — xu) 17.1
k=1 {1=k+1 =

where | > k, n; is the number of data (over years) for season i, and
Sgn (x,-l - x,-k) = 1 if X — Xik > O

=0 ifx,-, - Xp = 0

_1 ifx,-, - x,-k < 0
VAR(S;) is computed as follows:

&i

VAR(S;) = 1_18 [ni(n,- - D@2n; +5) — p§1 Lty — )22, + 5)

hi
Z)l gy — 1) Quyy + 5)}

q

8i hi
2 tilty = Dty = 2) 2 sglity = Dy = 2)
* On(my — D — 2)
gi hi )
Z: tip(tip - 1) gl uiq(uiq Y .
+ q 17.2

271,- (n,' - 1)
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where g; is the number of groups of tied (equal-valued) data in season [, Ly is
the number of tied data in the pth group for season i, h; is the number of
sampling times (or time periods) in season i that contain multiple data, and u;,
is the number of multiple data in the gth time period in season i. These
quantities are illustrated in Example 17.1.

After the S; and Var(S;) are computed, we pool across the K seasons:

K
S'= 28, 17.3
i=1
and
K
VAR(S') = 2 VAR(S) 17.4
i=1
Next, compute
$' -1 .
= —— f >0
[VAR(SI)]I/Z 1
=0 if =0
"+ 1
¢ ) if $S<0 17.5

= [VAR(S I)]IIZ

To test the null hypothesis, H,, of no trend versus the alternative hypothesis,
H,, of either an upward or downward trend (a two-tailed test), we reject H, if
the absolute value of Z is greater than Z, _on, Where Z, _ ., is from Table Al.
If the alternative hypothesis is for an upward trend at the o level (a one-tailed
test), we reject Hy if Z (Eq. 17.5) is greater than Z, _,. Reject Hy in favor of
a downward trend (one-tailed test) if Z is negative and the absolute value of Z
is greater than Z, _,. The computer code in Appendix B computes the seasonal
Kendall test for multiple or single observations per time period. Example 17.1
in the next section illustrates this test. The +1 added to the §’ in Eq. 17.5 is
a correction factor that makes Table A1 more exact for testing the null hypothesis.
This correction is not necessary if there are ten or more data for each season
(n; = 10). :

17.2 SEASONAL KENDALL SLOPE
ESTIMATOR

The seasonal Kendall slope estimator is a generalization of Sen’s estimator
of slope discussed in Section 16.5. First, compute the individual N, slope
estimates for the ith season:

_ Xa T Xy

Q; &

where, as before, x; is the datum for the ith season of the /th year, and x; is
the datum for the ith season of the kth year, where | > k. Do this for each of
the K seasons. Then rank the N| + Nj + - - - + Ny = N' individual slope
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estimates and find their median. This median is the seasonal Kendall slope
estimator.

A 100(1 — )% confidence interval about the true slope is obtained in the
same manner as in Section 16.5:

1. Choose the desired confidence level o and find Z,_,p» in Table Al.

2. Compute C, = Z, __,[VAR(S")]'2.

3. Computer M, = (N' — /2 and M, = (N’ + C)/2.

4. The lower and upper confidence limits are the M;th largest and the (M, +
Dth largest of the N’ ordered slope estimates, respectively.

EXAMPLE 17.1

We use a simple data set to illustrate the seasonal Kendall test and
slope estimator. Since the number of data are small, the tests and
confidence limits are only approximations. All computations are
given in Table 17.2. Suppose data are collected twice a year (e.g., ;
December and June) for 3 years at a given location. The data are ‘
listed below and plotted in Figure 17.1.

Year I
A
1 2 3
\
Season 11 2 1 2 2 1 2 v
Data 8 10 15 12 20 18 15 20 :
[\
Note that two observations were made in season 1 of year 1 and in s
v

season 2 of year 2. Also, there is 1 tied data value, 20, in season
2. Y

Table 17.2, Part A, gives the N, + N} = 5 + 5 = 10 individual [
slope estimates for the 2 seasons and their ranking from smallest to
largest. The seasonal Kendall slope estimate, 2.75, is the median of
these 10 values. In Table 17.2, Part B, the seasonal Kendall Z
statistic is calculated to be 2.1 by Egs. 17.3-17.5. To test for an

upward trend (one-tailed test) at the o = 0.05 level, we reject the pr
null hypothesis, Hy, of no trend if Z > Z, g5, that is, if Z > 1.645. of
Since Z = 2.10, we reject H, and accept that an upward trend is i
present. ; the

A 90% confidence interval on the true slope is obtained by
computing C, = 1.645[VAR(S")]"? = 1.645(3.808) = 6.264, M,
= (10 — 6.264)/2 = 1.868, and M, + 1 = (10 + 6.264)/2 + 1
= 9.132. Hence, the lower limit is found by interpolating between
the first and second largest values to obtain 1.7. The upper limit is wh
similarly found to be 4.1. ‘

17.3 HOMOGENEITY OF TRENDS IN s,
DIFFERENT SEASONS | the

Section 16.4.4 showed how to test for homogeneity of trend direction at different
stations when no seasonal cycles are present. That test is closely related to the
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Table 17.2 lllustration of the Seasonal Kendali Test and Slope Estimator.

Tabled Values Are Individual Slope Estimates Obtained from Eq. 17.6
Part A. Computing the Seasonal Kendall Slope Estimate

Season 1 Season 2
Year 1 | 2 3 Sum of Sum of 1 2 2 3 Sum of Sum of
Data 8 10 12 15 + Signs — Signs 15 20 18 20 + Signs -~ Signs
a +4 +35§ 2 0 +5 +3 +2.5 3 0
+2 +2.5 2 0 a 0 0 0
+3 1 0 +2 1 0
§ = 5 + 0 =5 S, = 4 + 0 =4

Ordered values of individual slope estimates:

0,2,2, 25, 25, 3,3,35,4,5
Median: Seasonal Kendall slope estimate = 2.75
80% Limits: 0.936 and 4.53

Part B. Computing the Seasonal Kendall Test

n =4 n, =4
& =0 &=1n =2
hy=1,u,=2 hy=1,u, =2
N =5 Ny, =35

Var(§)) = % [43)13) — 2D +0 + 0 = 7.667

Var($)) = 4 [43)(13) — 2(1)(9) ~ 2(1%9)] + 0 + (2(I2(1)1/8(3)
= 6.667 + 0.1667 = 6.834

[Var($))]1'? = 2.8 [VAR(S))'? = 2.6

S =85 +8=5+4=09

VAR(S') = VAR(S)) + VAR(S;) = 7.667 + 6.834 = 14.5

VARG = 3808 z=C-D_,,

3.808 )
“Cannot be computed since both data values are within the same time period.

"Refem’ng this value to Table A js only an approximate test for this example, since n, and
n; are small and there are only two seasons.

procedure developed by van Belle and Hughes (1984) to test for homogeneity
of trend direction in different seasons at a given station. This latter test is
important, since if the trend is upward in one season and downward in another,
the seasonal Kendall test and slope estimator will be misleading.

The procedure is to compute

K
szlomog = thotal - thrend = i=Zl le - KZ?
where
S.
Z ==
" IVAR(S))”?

§; is the Mann-Kendall statistic, computed with data collected over years, during
the ith season, and '

Z= z

N -
R
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Figure 17.1 Artificial data set to illustrate computation of the seasonal Kendall
slope estimator.

If xﬁomog exceeds the « critical value for the chi-square distribution with X
— 1 df, we reject the null hypothesis, Hy,, of homogeneous seasonal trends over
time (trends in the same direction and of the same magnitude). In that case the
seasonal Kendall test and slope estimate are not meaningful, and it is best to
compute the Mann-Kendall test and Sen’s slope estimator for each individual
season. If xﬁomog does not exceed the critical value in the chi-square tables (Table
A19), our calculated value of x2..q = KZ? is referred to the chi-square distribution
with 1 df to test for a common trend in all seasons.

The critical value obtained from the chi-square tables will tend to be too
small unless (1) the number of data used to compute each Z; is 10 or more,
and (2) the data are 'spaced far enough apart in time so that the data in different
seasons are not correlated. For some water quality variables Lettenmaier (1978)
found that this implies that sampling should be at least two weeks apart.

Van Belle and Hughes (1984) show how to test whether there is a pattern
to the trend heterogeneity when Xﬁomog is significantly large. They illustrate by
showing how to test whether trends in summer and winter months are significantly
different.

17.4 SEN’S TEST FOR TREND

The seasonal Kendall and chi-square tests are versatile and easy to use with the
computer code in Appendix B. However, if seasonal cycles are present, van
Belle and Hughes (1984) show that a nonparametric aligned rank test, used by
Farrell (1980) (proposed by Sen, 1968a), is more likely to detect monotonic
trends. It is especially true when only a few years of data are available.
However, Sen’s test is more difficult to compute than the seasonal Kendall test
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when there are missing values, and the test is inexact in that case. Given these
facts, Sen’s test is preferred to the seasonal Kendall test when no data are
missing. The computer code in Appendix B also computes Sen’s test. Com-
putational procedures are given in van Belle and Hughes (1984).

17.5 TESTING FOR GLOBAL TRENDS

In Section 17.3 the Xﬁomog statistic was used to test for homogeneity of trend
direction in different seasons at a given sampling station. This test is a special
case of that developed by van Belle and Hughes (1984) for M > 1 stations.
Their procedures allow one to test for homogeneity of trend direction at different
stations when seasonality is present. The test for homogeneity given in Section
16.4.4 is a special case of this test. Van Belle and Hughes illustrate the tests,
using temperature and biological oxygen demand data at two stations on the
Willamette River.

The required data are illustrated in Table 17.3. The first step is to compute
the Mann-Kendall statistic for each season at each station by Eq. 17.1. Let §,,
denote this statistic for the ith season at the mth station. Then compute

7 = _S'—
" [VARGS;)]™

where VAR(S,,,) is obtained by using Eq. 17.2. (For this application all quantities
in Eq. 17.2 relate to the data set for the ith season and mth station.) Note that
missing values, NDs, or multiple observations per time period are allowed, as
discussed in Section 17.1. Also, note that the correction for continuity (+1
added to § in Eq. 16.5 and S’ in Eq. 17.5) is not used in Eq. 17.6 for reasons
discussed by van Belle and Hughes (1984).

Next, compute

=1,2,---,K, m=12,--- M 17.6

1 M
z. =174,,.§IZ"'"’ i=1,2,---,K
= mean over M stations for the ith season

Table 17.3 Data to Test for Trends Using the Procedure of van Belle and
Hughes (1984)

Station 1 Station M
Season 1 2 cee K s 1 2 s K
1 X X211 T Xk e 1 Xyim Xo1m o Xm
2 X121 X221 T Xk a1 T 2 Xizm Xoam T XK2m
Year
L XL Xart T Xk ot L Xiem Xaorm T Xgm
S Sa1 Tt Sx1 Tt Sim Som oo Skm
Z, Zy T Zy, e Ziy Zm e Zgm

K = number of seasons; M = number of stations; L = number of years.
X;; = datum for the ith sampling time in the Ith year at the jth station.
Multiple observations per year for one or more seasons are allowed but not shown here.

e
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.——Zz, =1,2," -, M
m K(:l tm m
= mean over K seasons for the mth station
1 K M
Z.=—2 X Z
KMi=im=1 ™

= grand mean over all KM stations and seasons

Now compute the chi- square statistics in Table 17.4 in the following order:
Xtoml’ Xtrenda Xslauon: and Xseason Then compute

Xhomog = Xtotal - XIrend

and

2 _ 2 2 2
X station-season — Xhomog — X station X season

Refer X Zations X Zasons ANA X 2ion-ccason 10 the & level critical values in the chi-
square tables with M — 1, K — 1, and (M — 1)(K — 1) df, respectively.

If all three tests are nonsignificant, refer XZeng to the chi- square distribution
with 1 df to test for global trend. If x2,., is significant, but x2.;., is not,
that is, if trends have significantly different directions in different seasons but
not at different stations, then test for a different trend direction in each season
by computing the K seasonal statistics

MZ?  i=1,2,...,K seasons 17.7

and referring each to the a-level critical value of the chi-square distribution
with 1 df

If X2a0i0n 1S significant, but x2,.,, is not, that is, if trends have significantly
different directions at different stations but not in different seasons, then test
for a significant trend at each station by computing the M station statistics

Table 17.4. Testing for Trends Using the Procedure of van Belle and
Hughes (1984)

Degrees of
Chi-Square Statistics Freedom Remarks
1. M
KM
x:zousl = Z Z Z?m
i=1 m=1
X M H H
KM — 1 Obtained by subtraction
Xbomog = 24 2 Z2, — KMZ2, Y i
i=1 m=1
K
= = K -1 -Test for seasonal
2 — 2 2
Xseason = M ,.>=:, Zi. - KMZ. heterogeneity
Mo M- 1 Test for station
2 — 2 52
Xsuation = K m{;, Zom — KMZZ. heterogeneity
K M K M H
- M-1DHEK-1 Test for interaction
. = 2 _ 2 . .
Xiion-sason ,-E ,E, Zin— M ,,.5;;1 Zi Obtained by subtraction
M
K % 7% + KMZ2
m=]
Xeena = KMZ2. 1 Test for overall trend

M = number of stations; K = number of seasons; Z,, = Mann-Kendall statistic for the ith
season-mth station data set (see Table 17.3).
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KZ:, m=1,2,..., M stations

and refer to the o-level critical value of the chi-square distribution with 1 df.

If both x2aion and X2eason are significant or if X 2ation-season 18 significant, then
the x2 trend test should not be done. The only meaningful trend tests in that
case are those for individual station-seasons. These tests are made by referring
each Z,, statistic (see Table 17.3) to the a-level critical value of the standard
normal table (Table Al), as discussed in Section 16.4.2 (or Section 16.4.3 if
multiple observations per season have been collected). For these individual
Mann-Kendall tests, the Z, should be recomputed so as to include the correction
for continuity (+1) as given in Eq. 16.4.

The computer code listed in Appendix B computes all the tests we have
described as well as Sen’s estimator of slope for each station-season combination.
In addition, it computes the seasonal Kendall test, Sen’s aligned test for trends,
the seasonal Kendall slope estimator for each station, the equivalent slope
estimator (the “‘station Kendall slope estimator’’) for each season, and confidence
limits on the slope.

The code will compute and print the K seasonal statistics (Eq. 17.7) to test
for equal trends at different sites for each season only if (1) the computed P
value of the xZson test is less than o', and (2) the computed P value of the
Xation €Xceeds o', where o' is an a priori specified significance level, say
«' = 0.01, 0.05, or 0.10, chosen by the investigator. Similarly, the M station
statistics (Eq. 17.8) are computed only if the computed P value of X ation 1
less than o’ and that for Xeason 1S greater than a'. The user of the code can
specify the desired value of o'. A default value of o' = 0.05 is used if no
value is specified.

EXAMPLE 17.2

Table 17.5 gives a set of data collected monthly at 2 stations for 4
years (plotted in Fig. 17.2). These data were simulated on a computer
using the lognormal, autoregressive, seasonal cycle model given in
Hirsch, Slack, and Smith (1982, p. 112). The data at station 1 have
no long-term trend (i.e., they have a slope of zero), whereas station
2 has an upward trend of 0.4 units per year for each season. Hence,
seasonal trend directions are homogeneous, but the station trend
directions are not.

The chi-square tests are given in Table 17.6. We obtain that
Xlaion = 8.16 has a P value of 0.004. That is, the probability is
only 0.004 of obtaining a Xation Value this large when trends over
time at the 2 stations are in the same direction. Hence, the data
suggest trend directions are different at the 2 stations, which is the
true situation. Both XZacon a0d X iation-season Statistics (8.48 and 2.63)
are small enough to be nonsignificant. This result is also expected,
since trend direction does not change with season.

We chose o' = 0.05. Since xZason Was not significant (computed
P level exceeded o' = 0.05), the K seasonal statistics (Eq. 17.7)
were not computed. However, since X ation Was significant (P value
less than o' = 0.05) and X2emon Was not, the 2 station statistics
1272 and 12Z% were computed by Eq. 17.8 and found to equal 2.46

and 31.45, respectively (see Tble 17.6). These tests indicate some
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[, 1 |
. ;H Table 17.5 Simulated Water Quality Using a Lognormat Autoregressive,
¢ . Seasonal Cycle Model Given by Hirsch, Slack, and Smith (1982, Eq. 14f)
NUMBER OF YEARS = 4
NUMBER OF SEASONS = 12
NUMBER OF STATIONS = 2
NUMBER OF NUMBER OF
STATION DATA POINTS STATION DATA POINTS
1 n =48 2 n =48
YEAR SEASON STATION 1 YEAR SEASON STATION 2
1 1 6.32 1 1 6.29
1 2 6.08 1 2 6.11
1 3 5.16 1 3 5.66
1 4 4.47 1 4 5.16
1 5 4.13 1 5 4.75
1 6 3.65 1 6 6.79
1 7 3.48 1 7 4.51
1 8 3.78 1 8 4.37
1 9 3.94 1 9 4.95
1 10 4.40 1 10 5.22
1 1 494 1 11 5.73
1 12 5.32 1 12 6.72
2 1 5.82 2 1 7.42
2 2 5.76 2 7.56
2 3 4.88 2 3 6.13
2 4 4.84 2 4 6.24
2 ] 4.87 2 5 5.07
2 6 4.13 2 6 4.95
2 7 3.51 2 7 4.59
2 8 4.32 2 8 5.22
2 9 4.06 2 9 5.13
2 10 4.47 2 10 5.69
2 11 5.05 2 11 6. 41
2 12 5.20 2 12 7.53
3 1 5.83 3 1 7.02
3 2 5.65 3 2 6.93
3 3 5.32 3 3 6.55
3 4 5.33 3 4 6.66
3 5 4.20 3 5 6.69
3 6 3.85 3 6 5.23
3 7 4_45 3 7 5.14
3 8 3.56 3 8 5.06
3 9 3.85 3 9 5.71
3 10 4.72 3 10 6.17
3 11 5.38 3 11 6.78
3 12 5.33 2 12 7.64
4 1 6.59 4 1 7.46
4 2 5.93 4 2 7.56
4 3 4.98 4 3 7.30
4 4 4.61 4 4 7.22
4 5 4.18 4 5 6.07
4 6 3.79 4 6 5.53
4 7 3.64 4 7 5.65
4 8 3.77 4 8 5.94
4 9 4.05 4 9 6.68
4 10 4.50 4 10 6.42
4 11 5.15 4 1M . 7.10
4 12 5.57 4 12 7.86
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e STATION 2

CONCENTRATIONS

Figure 17.2 Data at two stations each month for four years. Data were simulated
using the lognormal autoregressive seasonal model given by Hirsch, Slack, and
Smith (1982, Eq. 14f). Simulated data were obtained by D. W. Engel.




236 Trends and Seasonality

Table 17.6 Chi-Square Tests for Homogeneity of Trends over Time between
Seasons and between Stations

HOMOGENEITY TEST RESULTS

PROB. OF A
CHI-SQUARE STATISTICS df LARGER VALUE

TOTAL 45.02007 24 0.006

HOMOGENEITY 19.26657 23 0.686

SEASON 8.48201 11 0.670 Trends not equal
STATION 8.15667 1 0.004 € at the 2 stations
STATION-SEASON 2.62789 11 0.995

TREND 25.75349 1 0.000 €——— Not meaningful

INDIVIDUAL STATION TREND

PROB. OF A

STATION CHI-SQUARE df LARGER VALUE
1 2.46154 1 : 0.117
31.44863 1 0.000

evidence of a trend at station 1 (P level = 0.117) and a definite
trend at station 2 (P level = 0.000).

Table 17.7 gives the seasonal Kendall and Sen aligned rank tests
at both stations. These results agree with the true situation. The
seasonal Kendall slope estimates are 0.042 and 0.440, which are
slightly larger than the actual values of 0.0 and 0.4, respectively.
The lower and upper confidence limits on the true slope are also
given in Table 17.7. Finally, Table 17.8 gives the individual Mann-
Kendall tests for trend over time for each season-station combination.
Since n is only 4 for each test, the P values are approximate because
they were obtained from the normal distribution (Table Al). The
exact P values obtained from Table A18 are also shown in the table.
The approximate levels are quite close to the exact. None of the
tests for station 1 are significant, and the 12 slope estimates vary
from —0.08 to 0.208 (the true value is zero). Seven of the 12 tests
for station 2 are significant at the o = 0.10 2-tailed level. If n were
greater than 4, more of the tests for station 2 would have been
significant. The 12 slope estimates range from —0.070 to 0.623 with
a mean of 0.414. Since n is so small, these estimates are quite
variable, but their mean is close to the true 0.40. Confidence intervals
for the true slope for 4 station-season combinations are shown in
Table 17.9. The computer code computes these for all KM combi-
nations.

17.6 SUMMARY

This chapter described and illustrated the seasonal Kendall test for trend, the
seasonal Kendall estimator of linear trend, the chi-square tests for homogeneous
trends for different stations and seasons, and tests for global trends. These tests
do not require the data to be normally distributed, they are not greatly affected
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Table 17.7 Seasonal Kendall and Sen Aligned Ranks Tests for Trend over ’
Time
PROB. OF EXCEEDING
THE ABSOLUTE VALUE
OF THE KENDALL
SEASONAL STATISTIC
STATION KENDALL n (TWO-TAILED TEST)
1 1.47087 48 0.141
5.51784 48 0.000
PROB. OF EXCEEDING
THE ABSOLUTE VALUE
OF THE SEN T STATISTIC M
STATION SEN T n (TWO-TAILED TEST)
1 1.02473 48 0.306
2 4.57814 48 0.000
SEASONAL-KENDALL SLOPE
CONFIDENCE INTERVALS
STATION ALPHA LOWER LIMIT SLOPE UPPER LIMIT
1. 0.010 -0.060 0.042 0.111
0.050 -0.020 0.042 0.085
0.100 -0.004 0.042 0.081
0.200 0.007 0.042 0.070
2 0.010 0.345 0.440 0.525
0.050 0.365 0.440 0.499
0.100 0.377 0.440 0.486
0.200 0.380 0.440 0.478

by outliers and gross errors, and missing data or ND values are allowed.
However, the tests still require the data to be independent. If they are not, the
tests tend to indicate that trends are present more than the allowed 100a% of
the time.

EXERCISES

17.1 Use the following data to test for no trend versus a rising trend, using
the seasonal Kendall test. Use o = 0.01.

Season
Year 1 2 3 4 5 6
i 5.71 4.63 3.97 3.37 3.88 4.95
2 6.29 4.79 5.64 4.42 5.18 6.29
3 7.33 6.91 5.96 6.48 5.30 7.77

17.2  Plot the data in Exercise 17.1 in their time order, and estimate the slope
of the rising trend, using the seasonal Kendall slope estimator.
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Table 17.8 Mann-Kendall Tests for Trend over Time for Each Se-ason at
Each Station

PROB. OF EXCEEDING
THE ABSOLUTE

MANN- VALUE OF THE 2
KENDALL STATISTIC
S z° (TWO-TAILED SEN

STATION SEASON STATISTIC STATISTIC n TEST) IF n> 10 SLOPE
1 1 2 0.33968 4 0.734 (0.750)* 0.050
2 -2 ~0.33968 4 0.734 (0.750) -0.080

3 0 0.00000 4 1.000 (1.000) -0.005

4 2 0.33968 4 0.734 (0.750) 0.208

5 0 0.00000 4 1.000 (1.000) -0.002

[ 0 0.00000 4 1.000 (1.000) -0.007

7 4 1.01905 4 0.308 (0.334) 0.059

8 -2 -0.33968 4 0.734 (0.750) -0.057

9 0 0.00000 4 1.000 (1.000> 0.016

10 4 1.01905 4 0.308 (0.334) 0.052

11 4 1.01905 4 0.308 (0.334) 0.090

12 4 1.01905 4 0.308 (0.334) 06.107

2 1 4 1.01905 & 0.308 (0.334) 0.378
2 3 0.72232 4 0.470 ( )€ 0.447

3 6 1.69842 4 0.089 (0.084) 0.508

4 6 1.69842 4 0.089 (0.084) 0.623

5 4 1.01905 4 0.308 (0.334) 0.470

6 0 0.00000 4 1.000 (1.000) -0.070

7 6 1.69842 ¢4 0.089 (0.084) 0.445

8 4 1.01905 4 0.308 (0.334) 0.442

9 6 1.69842 4 0.089 (0.084) 0.578

10 6 1.69842 &4 0.089 (0.084) 0.435

11 6 1.69842 4 0.089 (0.084) 0.413

12 6 1.69842 4 0.089 (0.084) 0.300

“+1 correction factor used to compute the Z statistic.

YExact two-tailed significance levels for the § statistic using Table A18.

“Cannot be determined from Table A18 since § = 3 resulted because of two tied data in the
season.

17.3  Use the results in Exercises 17.1 and 17.2 to compute an 80% confidence
interval about the true slope.

17.4 Test for equal trend directions in different seasons, using the data in
Exercise 17.1. Use o = 0.01. If the trends in the 6 seasons are
homogeneous, use chi-square to test for a statistically significant trend at
the o = 0.05 level.

17.5 Suppose the data in Exercise 17.1 were collected at station 1 and the
following data were collected at station 2.

Season
Year 1 2 3 4 5 6
1 9 8.5 8 7.5 8.3 10
2 12 11.5 11.2 11 12.5 15

3 17 16.5 16 15.5 16.3 17
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Table 17.9 Sen Slope Estimates and Confidence Intervals for Each Station-
Season Combination

SEN SLOPE
CONFIDENCE INTERVALS

STATION SEASON ALPHA LOWER LIMIT SLOPE UPPER LIMIT
1 1 0.010 n too small”’ 0.050 n too small?
0.050 n too smalt 0.050 0.087
0.100 n too small 0.050 0.440
0.200 -0.471 0.050 0.718
2 0.010 n too small -0.080 n too smatl
0.050 n too small -0.080 0.032
0.100 n too smaltl -0.080 0.162
0.200 -0.308 -0.080 0.258
2 1 0.010 n too small 0.378 n too smalt
0.050 n too small 0.378 -0.171
0.100 n too small 0.378 0.511
0.200 -0.353 0.378 1.052
2 0.010 n too small 0.447 n too small
0.050 n too small 0.447 0.251
0.100 n too small 0.447 0.984
0.200 -0.488 0.447 1.265

“The lower and upper limits cannot be comiputed if n is too small.

Test for homogeneity of trend direction between seasons and between
stations, using the chi-square tests in Table 17.4 with o = 0.01. Test
for a significant common trend at the 2 stations, if appropriate.

ANSWERS

17.1 Var(S;) 3(2)(11)/18 = 3.667 for each season. §' = L¢_,S; = 18,
Var(§’') = 6(3.667) = 22. From Eq. 17.5, Z = 17/~/22 = 3.62. Since -
a = 0.01 (one-tailed test), Z;q9o = 2.326. Since 3.62 > 2.326, we
accept the hypothesis of a rising trend.

I

17.2 The median of the 18 slope estimates is 1.09 units per year.

173 Z,_op = Zygo = 1.282, Var(S') = 22 from Exercise 17.1. Therefore,
C, = 128222 = 6.0131, M, = 6, M, + 1 = 13. Lower limit =
0.81; upper limit = 1.4.

17.4 From Exercise 17.1 we have Z, = 1.567 = Z, = 2, = Z, = Z,.
Therefore Z = 1.567; then X = 14.7, Xiend = 14.7, Xhomog = O-
Since xﬁomog < 15.09 (from Table A19), we cannot reject the null
hypothesis of homogeneous trend direction in all seasons. Hence, test for
trend, using XZeq = 14.7. Since 14.7 > 3.84 (from Table A19), we
conclude that a significantly large trend is present.

17.5 S, = 3, Var(§;,,,) = 3.667, and Z,, = 1.567, fori = 1, 2, . .. ,_6
seasons and m = 1,2 vyears. Z, =2, = ...=2¢ =2,=2,=2.
= 1.567. thotal = thrend = 29.5 and Xglalion = zeason = 07 X%omog =

2 —
Xstation-season = 0.
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Since XZason < 15.09, we cannot reject Hy of equal trend direction for

seasons.
Since x2ui0n < 6.63, we cannot reject H, of equal trend direction for
stations.

Since XZaonsmion < 15.09, we cannot reject Hy of no station-season
interaction.

Since the foregoing tests are all nonsignificant and x2.., > 6.63, we
conclude that a significant trend is present for both stations over all

seasons.
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18 Comparing Populations

An objective of many pollution monitoring and research studies is to make

comparisons between pollution levels at different times or places or collected

by different measurement techniques. This chapter provides simple nonparametric

tests for making such comparisons. These tests do not require that data follow

the normal distribution or any other specific distribution. Moreover, many of

these tests can accommodate a few missing data or concentrations at the trace
. or ND (not detected) levels.

We begin with procedures for comparing two populations. The procedures
are of two types: those for paired data, and those for independent data sets.
Examples of paired data are (i) measurements of two pollutants on each of n
field samples, (ii) measurements of a pollutant on air filters collected at two
adjacent locations for n time periods, and (iii) measurements of a pollutant on
both leaves and roots of the same n plants. The paired test we consider is the
sign test. Friedman’s test, an extension of the sign test to more than two
populations, is also given.

Independent data sets are those for which there is no natural way to pair the
data. For example, if n soil samples are collected at each of two hazardous
waste sites, there may be no rational way to pair a pollution measurement from
one site with a pollution measurement from the other site. For this type of data
we illustrate Wilcoxon’s rank sum test (also known as the Mann-Whitney test)
for the comparison of two populations and the Kruskal-Wallis test for the
comparison of more than two populations. The tests discussed in this chapter
can be computed by using a statistical software computer package such as
Biomedical Computer Programs P Series, (1983) and Statistical Package for the
Social Sciences (1985). Additional information on the tests in this chapter and
on related testing, parameter estimation, and confidence interval procedures are
given in Lehmann (1975), Conover (1980) and/or Hollander and Wolfe (1973).

18.1 TESTS USING PAIRED DATA

Suppose n paired measurements have been made. Denote these pairs by (x;,,
X21)s (K12, X29), « .+ ., (Xy,, X5,), Where xy; is the ith observation from population
1 and x,; is the paired ith observation from population 2. When data are paired,
we could compare the two populations by looking at the sign or the magnitudes
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of the set of n differences D, = Xoi — X1y i =1,2,. .., n The sign test
uses the signs and the Wilcoxon signed rank test uses the magnitudes. These
two tests are alternatives to the commonly used paired ¢ test described in many
statistical methods books, e.g., Snedecor and Cochran (1980, p. 85). The latter
test should be used if the differences are a random sample from a normal
distribution.

18.1.1 Sign Test

The sign test is simple to compute and can be used no matter what the underlying
distribution may be. It can also accommodate a few ND (not detected)
concentrations. It is more versatile than the Wilcoxon signed rank test since the
latter test requires that the underlying distribution be symmetric (though not
necessarily normal) and that no NDs be present. However, the Wilcoxon test
will usually have more power than the sign test to detect differences between
the two populations. The sign test may be the better choice if ease of computation
is an important consideration.

The sign test statistic, B, is the number of pairs (x;, x;) for which x,;, <
X, that is, the number of positive differences D;. The magnitudes of the D,
are not considered; only their signs are. If any D; is zero so that a + or —
sign cannot be assigned, this data pair is dropped from the data set and »n is
reduced by 1. The statistic B is used to test the null hypothesis:

Hj: The median of the population of all possible
differences is zero, that is, x,; is as likely
to be larger than x,; as x,; is likely to be
larger than x,; 18.1

Clearly, if the number of + and — signs are about equal, there is little reason
to reject H,.

Two-Sided Test .
If the number of paired data, n, is 75 or less, we may use Table Al4 to test
H, versus the alternative hypothesis
H,: The median difference does not equal zero, that is,
xy; is more likely to exceed x,; than x,, is likely
to exceed x;, or vice versa 18.2
Then reject Hy and accept H, at the o significance level if

B=<l—-1 or B=u

where / and u are integers taken from Table Al4 for the appropriate n and
chosen «.

For example, suppose there are n = 34 differences, and we choose to test
at the o = 0.05 level. Then we see from Table Al4 that we reject H, and
accept Hy if B < 10 or if B = 24.

EXAMPLE 18.1

Grivet (1980) reports average and maximum oxidant pollution con-
centrations at several air monitoring stations in California. The daily
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maximum (of hourly average) oxidant concentrations (parts per
hundred million) at 2 stations for the first 20 days in July 1972 are
given in Table 18.1. The data at the 2 stations are paired and perhaps
correlated because they were taken on the same day. This type of
correlation is permitted, but correlation between the pairs, that is,
between observations taken on different days, should not be present
for the test to be completely valid. If this latter type of positive
correlation is present, the test would indicate more than the allowed
100a% of the time a significant difference between the 2 stations
when none actually exists. This problem is discussed by Gastwirth
and Rubin (1971) and by Albers (1978a).

We test the null hypothesis that the median difference in maximum
concentrations between the two stations is zero, that is, there is no
tendency for the oxidant concentrations at one station to be larger
than at the other station. Since concentrations are tied on 3 days, n
equals 17 rather than 20. The number of + signs is B = 9, the
number of days that the maximum concentration at station 41541
exceeds that at station 28783, Suppose we use @ = 0.05. Then
from Table Al4 for n = 17 we find | = 6 and u = 15. Since B
is not less than or equal to / — 1 = 5 nor greater than or equal to
15, we cannot reject H,.

Table A14 gives values of / and u for n < 75, When n > 20, we may use
the following approximate test procedure:

1. Compute
7 _B-n2 2B-n
? T Jia Vn

2. Reject H, and accept H, (Eq. 18.2) if Z; < ~Zy_aporifZy = Z,__,.
where Z, _ , is obtained from Table Al.

18.3

- EXAMPLE 18.2

Using the data in Example 18.1, we test H, versus H,, using Zj.
We have Zy = (18 — 17)/v17 = 0.243. For & = 0.05, Table Al

gives Zy 975 = 1.96. Since Zg is not less than or equal to —1.96
Table 18.1 Maximum Oxidant Concentrations? at Two Stations in July 1972
Station Station Sign of Station Station Sign of
Day 28783 41541 Difference Day 28783 41541 Difference
1 8 10 + 11 11 13 +
2 5 7 + 12 12 14 +
3 6 7 + 13 13 20 +
4 7 7 b 14 14 28 +
5 4 6 + 15 12 6 -
6 4 6 + 16 12 7 - ;
7 3 3 b 17 13 7 -
8 5 4 - 18 14 6 -
9 5 5 b 19 12 4 -
10 6 4 - 20 15 5

“Tied concentrations.

N “Data are parts per hundred million. J




244 Comparing Populations

nor greater than or equal to 1.96, we cannot reject H,. This
conclusion is the same as that obtained by using Table Al4 in
Example 18.1.

One-Sided Test

Thus far we have considered only a two-sided alternative hypothesis (Eq. 18.2).
One-sided tests may also be used. There are two such tests:

1. Test H, versus the alternative hypothesis, H,, that the x, measurements tend
to exceed the x,” measurements more often than the reverse. In this case
reject Hy and accept H, if B > u, where u is obtained from Table Al4.
Alternatively, if n > 20, reject H, and accept H, if Z; > Z, __, where Zy
is computed by Eq. 18.3 and Z, _« is from Table Al.

2. Test Hy versus the alternative hypothesis that the x, measurements tend to
exceed the x, measurements more often than the reverse. If n < 75, use
Table Al4 and reject H, and accept Hy if B < [ — 1. Alternatively, if n
> 20, reject Hy and accept H, if Zy < —Z, ~«> Where Zg is computed by

Eq. 18.3.

When one-sided tests are conducted with Table A14, the « levels indicated
in the table are divided by 2. Hence, Table Al4 may only be used to make
one-sided tests at the 0.025 and 0.005 significance levels.

Trace Concentrations

The sign test can be conducted even though some data are missing or are ND
concentrations. See Table 18.2 for a summary. of the types of data that can
occur, whether or not the sign can be determined, and the effect on n. The
effect of decreasing n is to lower the power of the test to indicate differences
between the two populations. '

18.1.2 Wilcoxon Signed Rank Test

The Wilcoxon signed rank test can be used instead of the sign test if the
underlying distribution is symmetric, though it need not be a normal distribution.
This Wilcoxon test (not to be confused with the Wilcoxon rank sum test
discussed in Section 18.2.1) is more complicated to compute than the sign test

Table 18.2 Determination of the Sign Test

Can Sign Be
Type of Data Computed? Decreases n?
One or both members of a pair No Yes
are absent
Xy = Xy No Yes
One member of a pair is ND Yes® No
Both members of a pair are ND No Yes

“If the numerical value is greater than the detection limit of the
ND value.
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because it requires computing and ranking the D,. In most situations it should
have greater power to find differences in two populations than does the sign
test. The null and alternative hypotheses are the same as for the sign test. The
test is described by Hollander and Wolfe (1973).

18.1.3 Friedman’s Test

Friedman’s test is an extension of the sign test from two paired populations to
k related populations. The underlying distribution need not be normal or even
symmetric. Also, a moderate number of ND values can be accommodated
without seriously affecting the test conclusions. However, no missing values
are allowed. The null hypothesis is

Hy: There is no tendency for one population to
have larger or smaller values than any other
of the k populations

The usual alternative hypothesis is

H,: At least one population tends to have larger
values than one or more of the other populations

Examples of ‘‘populations’’ appropriate for Friedman’s test are (i) measure-
ments of k¥ = 3 or more pollutants on each of field samples, (ii) measurements
of a single pollutant on air filters collected at k = 3 or more air monitoring
stations for » time periods, or (iii) measurements obtained by k = 3 or more
analytical laboratories on a set of n identical spiked samples. The data are laid
out as follows:

Block
1 2 3 n
Population 1 T oxy X2 X3 . Xin
Popqlation 2 X2 X9 X3 . Xon
Popl;lation k X1 X Xi3 . Xien

The steps in the testing procedure are as follows:

1. For each block, assign the rank 1 to the smallest measurement, the rank 2
to the next largest measurement, . . . » and the rank k to the largest
measurement. If two or more measurements in the block are tied, then assign
to each the midrank for that tied group (illustrated Example 18.3).

2. Compute R;, the sum of the ranks for the Jjth population.

3. If no tied values occur within any block, compute the Friedman test statistic
as follows:

12 &
— 2
F, = [mja Rj] = 3nk + 1) 18.4

4. If tied values are present within one or more blocks, compute the Friedman

statistic as follows:

|
|
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k [ nk + 1)J2

12 2 |&———
j=1
F. = — — 18.5
S 3 ) _
nktk + 1) P 1.-§. {(E t,_1> }

where g; is the number of tied groups in block i and t;; is the number of
tied data in the jth tied group in block i. Each untied value within block i
is considered to be a ‘‘group’’ of ties of size 1. The quantity in braces { }
in the denominator of Eq. 18.5 is zero for any block that contains no ties.
This method of handling ties is illustrated in Example 18.3. Equation 18.5
reduces to Eq. 18.4 when there are no ties in any block.

5. For an o level test, reject H, and accept H, if F, = X3 _ax—1, where
xf_,,_k_, is the 1 — « quantile of the chi-square distribution with k¥ — 1
df, as obtained from Table A19, where k is the number of populations. The
chi-square distribution is appropriate only if n is reasonably large. Hollander
and Wolfe provide exact critical values (their Table A.15) for testing F, for
the following combinations of k and n: k = 3, n=2,3,...,13 k=
4 nm=2,3...,8k=35n=3, 4,5 Odeh et al. (1977) extend
these tables to k = 5, n = 6,7,8 k=6,n=2, 3, 4, 5, 6. These tables
will give only an approximate test if ties are present. The use of F, computed
by Eq. 18.5 and evaluated using the chi-square tables may be preferred in
this situation. The foregoing tests are completely valid only if the observations
in different blocks are not correlated.

In step 1, if there is one ND value within a block, assign it the rank 1. If
there are two or more ND values within a block, treat them as tied values and
assign them the midrank. For example, if three NDs are present within a block,
each is assigned the rank of 2, the average of 1, 2, and 3. This method of
handling NDs assumes all measurements in the block are greater than the
detection limit of all the ND values in the block.

EXAMPLE 18.3

The data in Table 18.3 are daily maximum oxidant air concentrations
(parts per hundred million) at k = § monitoring stations in California
for the first n = 6 days in July 1973 (from Grivet, 1980). We shall
use Friedman’s procedure to test at the & = 0.025 significance level
the null hypothesis, H,, that there is no tendency for any station to

Table 18.3 Daily Maximum Air Concentrations? in California During July 1973

Day (Block)

Station Sum of
Number 1 2 3 4 5 6 Ranks (R)
28783 7 (2)° 5 @) 7 3.5) 12 (2) 4(3) 4 4) 18.5
41541 5() 3 (1.5 3 () 8 (D) 3 (1.5 2() 7
43382 11 4) 4 (3) 7 (3.5) 17 @) 5@.5) 4 (4) 23
60335 13 (5) 6 (5) 12 (5) 21 (5) 5@4.5) 4@ 28.5
60336 8(3) 3(1.5) 4 (2) 13 (3) 3 (1.5) 3 13

“Data are parts per hundred millions.
®Rank of the measurement.
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Table 18.4 Computing the Correction for Ties in Eq. 18.5 for Friedman’s Test

Ri
Blocks & L j=Zl t'J’ k
2 4 Ly =2, Lao=thi=1,=1 I-5=¢
3 4 3, = 2, Bar=h;=1t,=1 11 -5=¢6
5 - 3 Is) =1s3=2,13 =1 17 -5 =12
6 3 e = 3, lg2 =13 = 1 29 -5 =24
Sum = 48

have oxidant levels greater or smaller than any other station. Also
shown in Table 18.3 are the ranks of the measurements obtained as
in step 1 and the sum of the ranks for each station (step 2).

Since there are ties in blocks 2, 3, 5, and 6, we must use Eq.
18.5 to compute F,. First compute the quantity in braces { } in the
denominator of Eq. 18.5 for all blocks that contain ties. This
computation is done in Table 18.4.

. Note that the values of all the %,;’s in each block must sum to
k, the number of populations (stations). Since k = S5, n =6, and
Sum = 48, Eq. 18.5 is

- 12[(18.5 — 18)> + (7 — 18)? +o 4 (13 ~ 18)Y
B 6(5)(6) — 48/4

F,

= 20.1

For & = 0.025 we find from Table A19 that Xoo75.4 = 11.14.
Since F, > 11.14, we reject Hy and accept the H, that at least 1
station tends to have daily maximum oxidant concentrations at a
different level than the other stations. From Table 18.3 it appears
that stations 41541 and 60336 have consistently lower concentrations
than the other stations.

18.2 INDEPENDENT DATA SETS

We discuss two nonparametric tests for independent data sets: the Wilcoxon
rank sum test (not to be confused with the Wilcoxon signed rank test discussed
in Section 18.1.2) and the Kruskal-Wallis rank test, which generalizes the
Wilcoxon rank sum test to more than two populations.

18.2.1 Wilcoxon Rank Sum Test

The Wilcoxon rank sum test may be used to test for a shift in location between
two independent populations, that is, the measurements from one population
tend to be consistently larger (or smaller) than those from the other population.
This test is an easily computed alternative to the usual independent-sample ¢
test discussed in most statistics methods books (see, e. g., Snedecor and Cochran,
1980, p. 83). (Do not confuse the independent-sample ¢ test with the paired ¢
test for paired data. The latter s discussed by Snedecor and Cochran, 1980, p.
85.)
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The rank sum test has two main advantages over the independent-sample ¢
test: (i) The two data sets need not be drawn from normal distributions, and
(ii) the rank sum test can handle a moderate number of ND values by treating
them as ties (illustrated in Example 18.4). However, both tests assume that the
distributions of the two populations are identical in shape (variance), but the
distributions need not be symmetric. Modifications to the ¢ test to account for
unequal variances can be made as described in Snedecor and Cochran (1980,
p- 96). Evidently, no such modification exists for the rank sum test. Reckhow
and Chapra (1983) illustrate the use of the rank sum test on chlorophyll data
in two lakes.

Suppose there are n, and n, data in data sets 1 and 2, respectively (n, need
not equal n,). We test

Hy,: The populations from which the two data sets have
been drawn have the same mean 18.6

versus the alternative hypothesis
N H,: The populations have different means - 187

The Wilcoxon rank sum test procedure is as follows:

1. Consider all m = n, + n, data as one data set. Rank the m data from 1 to
m, that is, assign the rank 1 to the smallest datum, the rank 2 to the next
largest datum, . . . , and the rank m to the largest datum. If several data
have the same value, assign them the midrank, that is, the average of the
ranks that would otherwise be assigned to those data.

2. Sum the ranks assigned to the n; measurements from population 1 Denote
this sum by W,_. '

3.If n; < 10 and n, < 10, the test of H, may be made by referring W, to
the appropriate critical value in Table A.5 in Hollander and Wolfe (1973)
(see their pages 67-74 for the test method).

4. If ny > 10 and n, > 10 and no ties are present, compute the large sample
statistic

_ W —nm(m + D2
B mny(m + 1)/12]72

5.1fny > 10 and n, > 10 and ties are present, do not compute Eq. 18.8.
Instead, compute

18.8

W — niim + 12

= 8 12
12 =" -
m(m — 1)

where g is the number of tied groups and ¢ is the number of tied data in
the jth group. Equation 18.9 reduces to Eq. 18.8 when there are no ties.
6. For an « level two-tailed test, reject Hy (Eq. 18.6) and accept H, (Eq. 18.7)
fZs < -Z,_,porifZ, = Zi_an.
7. For a one-tailed « level test of H, versus the H, that the measurements
from population 1 tend to exceed those from population 2, reject H, and
accept H, if Z, = Z,_ .
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8. For a one-tailed o level test of H, versus the H, that the measurements
from population 2 tend to exceed those from population 1, reject H, and
accept Hy if Z, < -Z,_,,.

EXAMPLE 18.4

In Table 18.5 are **' Am concentrations (pCi/g) in soil crust material
collected within 2 plots, one near (“‘onsite’’) and one far (““offsite’”)
from a nuclear reprocessing facility (Price, Gilbert, and Gano, 1981).
Twenty measurements were obtained in each plot. We use the
Wilcoxon rank sum test to test the null hypothesis that average
concentrations at the 2 plots are equal versus the alternative hypothesis
that the onsite plot (population 1) has larger concentrations than in
the offsite plot (population 2). That is, we perform the test in step
7. We shall use & = 0.05. The ranks of the combined data are
shown in Table 18.5 and W is computed to be 500.

There are g = 6 groups of ties. Four groups have length 2, that
is, t = 2, and 2 groups have ¢t = 3. Equation 18.9 gives

7 - 500 — 20(41)/2
7 {1200/12] [41 — [4)(2)3) + Q@)3)®)140391} '
Performing the test in step 7, since Z, > 1.645, we reject H,

and accept H, that the onsite population has larger >*'Am concen-
trations than the offsite plot.

=2.44

We note that the correction for ties, that is, using Eq. 18.9 instead of Eq.
18.8, will usually have a negligible effect on the value of Z. The correction
becomes more important if the ¢; are large. Also, if NDs are present but occur
in only one of the populations, it is still possible to rank all the data and
perform the test. For instance in Example 18.4 if the negative concentrations
had been reported by the analytical laboratory as ND values, they would still
have been assigned the ranks 1, 2, and 3 if NDs were treated as being less in
value than the smallest numerical value (0.0056). In addition, if the three ND
values had been considered to be tied, all three would have been assigned the

Table 18.5 2*'Am Concentrations in (pCi/g) Soil Crust Material

“Rank of the datum.
¥Negative measurements reported by the analytical laboratory.

Population 1 (onsite) Population 2 (offsite)

0.0059 ;) 0.036 (28) -0.011° ) 0.019 (16)
0.0074 @ 0.040 29 —-0.0088% 2) 0.020 (18.5)
0.015 9.5 0.042 30) —0.0055° 3) 0.020 (18.5)
0.018 (13.5) 0.045 31 0.0056 (O] 0.022 (20)
0.019 16) 0.046 32) 0.0063 6) 0.025 22)
0.019 (16) 0.053 (34 0.013 8) 0.030 (23)
0.024 @n 0.062 36) 0.015 9.5) 0.031 (25)
0.031 25) 0.066 37 0.016 (11.5) 0.050 33)
0.031 25) 0.069 38) 0.016 (11.5) 0.057 (35)
0.034 27) 0.081 40) 0.018 (13.5) 0.073 39)
We=5+74+95+ --- + 38 + 40 = 500.
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average rank of 2, which would not have changed the value of W,. If NDs
occur in both populations, they can be treated as tied values all less than the
smallest numerical value in the combined data set. Hence, they would each
receive the average rank value for that group of NDs, and the Wilcoxon test
could still be conducted. (See Exercise 18.4.)

18.2.2 Kruskal-Wallis Test

The Kruskal-Wallis test is an extension of the Wilcoxon rank sum test from
two to k independent data sets. These data sets need not be drawn from
underlying distributions that are normal or even symmetric, but the k distributions
are assumed to be identical in shape. A moderate number of tied and ND values
can be accommodated. The null hypothesis is

H,: The populations from which the k data sets have
been drawn have the same mean 18.10

The alternative hypothesis is

H,: At least one population has a mean larger or
smaller than at least one other population 18.11

The data take the form

Population
1 2 3 k
Xq X21 X3 cee X1
X2 X2 X32 S Xiz
Xim . Xomy X3py Kiny
The total number of data is m = n+ np + - -+ 4+ n,, where the n; need

not be equal. The steps in the testing procedure are as follows:

1. Rank the m data from smallest to largest, that is, assign the rank 1 to the
smallest datum, the rank 2 to the next largest, and so on. If ties occur,
assign the midrank (illustrated in Example 18.5). If NDs occur, treat these
as a group of tied values that are less than the smallest numerical value in
the data set (assuming the detection limit of the ND values is less than the
smallest numerical value).

2. Compute the sum of the ranks for each data set. Denote this sum for the
Jth data set by R;. :

3. If there are no tied or ND values, compute the Kruskal-Wallis statistic as
follows:

12 K R?
K, = [E 2 —’] - 3@m + 1) 18.12
mim + 1) j=1 n;

4. If there are ties or NDs treated as ties, compute a modified Kruskal-Wallis
statistic by dividing X,, (Eq. 18.12) by a correction for ties, that is, compute




—

o]
K,
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~
2
I

Cm® = 1)

1

Z 18.13
250}~ 1)

where g is the number of tied groups and t; is the number of tied data in
the jth group. Equation 18.13 reduces to Eq. 18.12 when there are no ties.

. For an « level test, reject H, and accept H, if K|, = xf_a,k_,, where

x2 —ak-1 15 the 1 — o quantile of the chi-square distribution with k — 1
df, as obtained from Table A19, where k is the number of data sets. Iman,
Quade, and Alexander (1975) provide exact significance levels for the

folloowing cases:

k=3
k=4
k=5

n <6
n=n

4

=
A

n <3

=n3=7

=n3=8

Less extensive exact tables are given in Conover (1980) and Hollander and

Wolfe (1973) for k = 3 data

EXAMPLE 18.5

sets.

An aliquot-size variability study is conducted in which multiple soil
aliquots of sizes 1 g, 10 g, 25 g, 50 g, and 100 g are analyzed for
!Am. A portion of the data for aliquot sizes 1 g, 25 g, and 100
g is used in this example. (Two ND values are added for illustration.)
The full data set is discussed by Gilbert and Doctor (1985). We test
the null hypothesis that the concentrations from all 3 aliquot sizes
have the same mean. The alternative hypothesis is that the concen-
trations for at least 1 aliquot size tend to be larger or smaller than
those for at least 1 other aliquot size. We test at the o = 0.05
level. The data, ranks, and rank sums are given in Table 18.6.

Table 18.6 Aliquot-Size Variability Study

*\Am Concentrations (nCilg)

1g 25 ¢ 100 g
1.45 (7y° 1.52 (8.5) 1.74 (13)
1.27 (6) 2.46 (22) 2.00 (17.5)
1.17 4) 1.23 (5) 1.79 (14)
1.01 3) 2.20 (20) 1.81 (15)
2.30 21 2.68 (23) 1.91 (16)
1.54 (10) 1.52 (8.5) 2.11 (19)
1.71 (11.5) ND (1.5) 2.00 (17.5)
1.71 (11.5)

ND (1.5)
R =755 R, = 885 Ry = 112
n =9 n, =17 ny =7

“Rank of the datum.
ND = not detected.

e ______|
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There are g = 4 groups of ties and t+ = 2 for each group. The
modified Kruskal-Wallis statistic (Eq. 18.13) is

_ [12/2324)}(75.5%/9 + 88.5%/7 + 112%/7) — 3(24)
B 1 — 4(2)(3)/23(528)

From Table A19 we find xg.gs_z = 5.99. Since K|, < 5.99, we
cannot reject Hy at the o« = 0.05 level,

Note that the cormection for ties made a negligible difference in
the test statistic. However, a bigger correction is obtained if 7 is
large for one or more groups of ties. This could happen if there are
many NDs, where ¢ is the number of NDs.

K., = 5.06

18.3 SUMMARY

This chapter discussed simple nonparametric tests to determine whether observed
differences in two or more populations are statistically significant, that is, of a
greater magnitude than would be expected to occur by chance. We emphasize
the correction for ties that these nonparametric tests provide, since a moderate
number of trace or ND measurements can be accommodated by assuming they
are a group of tied values. Hollander and Wolfe (1973) and Conover (1980)
provide other uses for these tests and discuss related estimation and confidence
interval procedures.

EXERCISES

18.1 Use the first 10 days of oxidant data in Example 18.1 to conduct a one-
tailed sign test at the & = 0.025 level. Use the alternative hypothesis
H,: Maximum oxidant concentrations at station 41541 tend to exceed
those at station 28781 more than the reverse.

18.2  Suppose the following paired measurements have been obtained (ND =
not detected; M = missing data):

Pair

1 2 3 4 5 6 7 8 9 10 11

X, ND 7 ND M 3 M 3 7 12 10 15
X, ND 6 6 6 1 M 2 1 11 8 3

Conduct a one-tailed sign test of H, versus the H, that x, measurements
tend to exceed x, measurements more often than the reverse. Use oa =
0.025.

18.3 Compute Friedman’s test, using the data in Example 18.3 and a =
0.025. Ignore the correction for ties.

18.4  Suppose all **' Am concentrations less than 0.02 pCi/g in the 2 populations
in Example 18.4 were reported by the analytical laboratory as ND. Use
the Wilcoxon rank sum test to test Hy: means of both populations are
equal versus H,: the offsite population has a smaller mean than the onsite
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population. Use o = 0.025. What effect do the large number of NDs
have on Z.? Is it more difficult to reject H, if NDs are present?

18.5 Suppose that all 21 Am measurements less than 1.5 nCi/g in Example
18.5 were reported by the laboratory as ND. Use the Kruskal-Wallis test
on the resulting data set. Use @ = 0.05. (Retain the 2 NDs in Example
18.5.) -

ANSWERS

18.1 Denote station 28781 data as x; data, and station 41541 data as X, data.
B = 5. From Table Al4, u = 7. Since B < 7, we cannot reject H, at
the o« = 0.025 level.

18.2 Delete pairs 1, 4, and 6. n = 8, B = 1. From Table A14, 7 — 1 = ¢,
Since B = 1, we cannot reject H.

18.3 Equation 18.4 gives F, = 18.77. Reject H, and accept H,, since 18.77 >
11.14, the same result as when the correction for ties was made.

184 w, = 487. & =3 withz = 17, 2, and 3. Zy = 77/35.5163 = 2.168.
Since Z; > 1.645, reject H, and accept H,. The NDs reduced Z from
2.436 in Example 18.4 to 2.168. Yes!

185 R, = 74, R, =90,R; =112, m = 23, K, = 5.339/0.97085 = 5.50.

Since K, < 5.99, we cannot reject Hy at the o = 0.05 level.
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Table A1 Cumulative Normal Distribution (Values of p Corresponding to Z,
for the Normal Curve)

Zp .00 01 .02 .03 .04 .05 .06 .07 .08 .09
.0 -5000 5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
.1 .5398 5438 5478 .5517 .5557 .5596 .5636 .5674 4714 .5753
.2 .5793 .5832 .5871 .5910 .5948 .5967 .6026 6064 .6103 6141
.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 L6443 .6480 .6517
4 -6554 6591 .6628 .6664 .6700 .6736 .6772 .6808 L6844 .6879
5 .6915 .6950 .6985 .7019 .7054 .7088 L7123 7157 7190 7224
.6 .7257 .7291 L7324 .7357 .7389 7422 .7454 L7486 L7517 .7549
7 .7580 L7611 7642 .7673 7704 7734 7764 .779% .7823 .7852
.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
.9 .8159 .8186 8212 .8238 .8264 .828¢9 .8315 .8340 .8365 .8383
1.0 L8413 .8438 .8461 8485 .8508 .8531 .8554 .8577 -8599 .8621
1.1 .8643 8665 .8686 .8708 .8729 8749 .8770 .8790 .8810 .8830
1.2 .8649 .8869 .8888 .8907 .8925 8944 .8962 .898C .8997 .9015
1.3 19032 .9049 .9066 .9082 9099 9115 -9131 L9147 .9162 9177
1.4 9192 .9207 .9222 9236 L9251 9265 .9279 .9292 .9306 .9319
1.5 .9332 .9345 .9357 .9370 .9382 L9394 .9406 .9418 9429 .94
1.6 9452 .9463 9474 9484 9495 .9505 -9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 -9591 .959% 9608 .9616 .9€25 .9633
1.8 L9641 .9649 .9656 .9664 L9671 9678 .9686 L9693 -9699 .970¢
1.9 .9713 9719 .9726 .9732 .9738 S744 .9750 .9756 L9761 .9767
2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 9821 .9826 .9830 .9834 .9838 .9842 .9846 .985C .9854 .9857
2,2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9864 .9887 .989¢
2.3 .9893 .9896 .9898 29901 .8904 .9906 .9909 L9911 .9913 .991€
2.4 9918 .9920 .9922 .9925 .9927 -9929 .9931 .9932 L9934 .9936
2.5 .9938 L9940 9941 .9943 .9945 .9946 -9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 <9960 .9961 -9962 .9563 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 L9971 .9972 L9973 9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 -9984 .9984 .9985 .9985 .9986 .998¢€
3.0 .99867 .9987 .9987 .9988 .9986 .9989 .9989 .998% .9990 -9990
30 .9990 .9991 .9991 .9991 .9992 .9992 .9992 L9992 .9993 .9923
3.2 .2993 .9993 .9994 .9994 .999%4 L9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .999¢

Source: After Pearson and Hartley, 1966.
This table is first used in Section 4.4.2.
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Table A2 Quantiles of the t Distribution (Values of t Such That 100p%

of the Distribution Is Less Than t,)

Degrees
of

Freedor %0.60 .70 t0.60 %0.90 %0.95 0.975 %0.990 t9.995
1 .325 727 1.376 3.078 6.314 12.706 31.821 63.657
2 .289 617 1.061 1.886 2.920 4.303 6.965 9.925
3 - .277 .584 578 1.638 2.353 3.182 4.541 5.841
4 271 .569 .941 1.533 2.132 2.176 3.747 4.604
5 .267 .55 -920 1.476 2.015 2.571 3.365 4.032
6 .265 .553 .906 1.440 1.943 2.447 3.143 3.707
7 .263 .549 .896 1.415 1.895 2.365 2.998 3.499
8 262 “546 .889 1.397 1.860 2.306 2.896 3.355
9 .261 2543 .883 1.383 1.833 2.262 2.821 3,250
10 .260 542 .879 1.372 1.812 2.228 2.764 3.169
11 .260 .540 .876 1.363 1.796 2.201 2.718 3.106
12 .259 .539 .873 1.356 1.762 2.179 2.681 3.055
13 .25¢ .538 -870 1.350 1.771 2.160 2.650 3.012
1% .256 537 .868 1.345 1.761 2.145 2.624 2.977
15 .258 536 .866 1.341 1.753 2.131 7.602 2.947
16 .258 .535 .865 1.337 1.746 2.120 2.583 2.921
7 .257 -53% .663 1.333 1.740 2.110 2.567 2.898
18 .257 534 .862 1.330 1.734 2.101 2.552 2.878
19 .257 .533 .861 1.328 1.729 2.093 2.539 2.861
20 .257 .533 .860 1.325 1.725 2.086 2.528 2.845
21 .257 .532 .859 1.323 1.721 2.080 2.518 2.831
22 .256 .532 “E56 1.321 1.717 2.074 2.508 2.819
23 .256 .532 .858 1.319 1.714 2.069 2.500 2.807
2% .256 .531 .857 1.318 1,711 2.064 2.492 2.797
25 .256 .531 .856 1.316 1.708 2.060 2.885 2.787
26 .256 .531 .856 1.315 1.706 2.056 2.479 2.779
27 .256 .531 .855 1,314 1.703 2.052 2.473 2.771
28 .256 .530 .855 1.313 1.7200 2.048 2.467 2.763
29 .256 2530 .854 1.313 1.699 2.085 2.462 2.756
36 .256 530 .854 1.310 1.697 2.042 2.457 2.750
%0 .255 .529 851 1.303 1.684 2.021 2.423 2,704
60 .254 527 -84 1.296 1.671 2.000 2.390 2.660
120 .254 .526 .45 1.289 1.658 1.980 2.358 2.617
- .253 524 .842 1.282 1.645 1.960 2.326 2.576

Source: From Fisher and Yates, 1974. Used by permission.
This table is first used in Section 4.4.2.
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Table A3 Factors Ky -ap for Estimating an Upper 100(1 — «)% Confidence Limit on the pth
Quantile of a Normal Distribution

1 -a=0.9 1 -a=0.9

P P

n 0.900 0.950 0.975 0.990 0.999 n 0.900 0.950 0.975 0.990 0.999
10.253  13.090 15.586 18,500 24.582 2 20.581 26.260 31,257 37.094 49,276
4,258 5.311 6.244 7.340 9.651 3 6.155 7.656 8.986  10.553  13.857
3.188 3,957 4,637 5.438 7.129 & 4.162 5.144 6.015 7.042 9.214

<

2
3
4
5 2.744 3.401 3.983 4,668 6.113 3.413 4,210 4.916 5.749 7.509
6 2.494 3.093 3.621 &§.243 5.556 6 3.008 3.711 4,332 5.065 6.614
7 2.333 2.893 3.389 3.972 5,201 7 2.756 3.401 3.971 4,643 6.064
8 2.21¢8 2,754 3.227 3.783 4,955 8 2,582 3.188 3.724 4.355 5.689
9 2.133 2,650 3.106 3.641 4,771 9 2.454 3.032 3.543 4,144 S.414
10 2,066 2.568 3.01 3.532 4,628 10 2.355 2.911 3.403 3.981 5.204
11 2.012 2.503 2.936 3,444 4.515 1 2.275 2,815 3.291 3.852 5.036
12 1.966 2.448 2.872 3.3N1 4.620 12 2.210 2.736 3.201 3.747 4,900
13 1.928 2.403 2.820 3.310 4,341 13 2,155 2,670 3.125 3.659 4,787
14 1.895 2.363 - 2.774% 3.257 5.274 14 2.108 2,614 3.060 3.585 4.690
15 1.866 2.329 2.735 3.212 4.215 15 2,068 2.566 3.005 3.520 4.607
16 1.842 2.299 2.700 3.172 4.164 16 2.032 2.523 2.956 3.463 4,534
17 1.819 2,272 2.670 3.137 4,118 17 2.002 2.486 2.913 3.414 4.7
18 1.800 2.249 2,643 3.106 4,078 18 1.974 2.455 2.875 3.370 4.415
19 1.781 2,228 2.618 3.078 4.041 19 1.949 2.423 2.840 3.331 4,364
20 1.765 2,208 2.597 3.052 4.009 20 1.926 2.39% 2.809 3.295 &.319
21 1.750 2,190 2.575 3.028 3.979 21 1.9G5 2.3 2.781 3.262 4.276
22 1.736 2.174 2.557 3.007 3.952 22 1.887 2.350 2.756 3.233 4.238
23 1.724 2.159 2,540 2.987 3.927 23 1.869 2.329 2,732 3.206 4.204
24 1.712 2.145 2.525 2.969 3.904 24 1.853 2.309 2.7 3.8 &N
25 1.702 2.132 2.510 2,952 3.882 25 1.838 2.292 2.691 3.158 4,143
30 1,657 2.080 2.450 2.884 3.794 30 1.778 2,220 2.608 3.064 4,022
35 1.623 2.041 2.406 2.833 3.730 35 1.732 2.166 2,548 2.99% 3.934
40 1.598 2.010 2.3 2.793 3.679 40 1.697 2,126 2.501 2.941 3.866
45 1.577 1.98¢€ 2.344 3,762 3.638 45 1.669 2.092 2.463 2.897 3.811
50 1.560 1.965 2.320 2.735 3.604 50 1.646 2.065 2.432 2.863 3.766
60 1.532 1.933 2.284 2.694 3.552 60 1.609 2.022 2.384 2.807 3.695
70 1.51 1.909 2,257 2,663 3.513 70 1.581 1.990 2.348 2.766 3.643
80 1.495 1.890 2.235 2.638 3.482 80 1.560 1.965 2.319 2,733 3.601
2 1.481 1.874 2.217 2.618 3.456 90 1.542 1.944 2,295 2.706 3.567
100 1.470 1.861 2.203 2.601 3.435 100 1.527 1.927 2,276 2.684 3.539
120 1.452 1.841 2,179 2.574 3.402 120 1.503 1.899 2,245 2.649 3,485
145 1.436 1.821 2.158 2.550 3.3Nn 145 1.481 1.874 2,217 2.617 3.455
300 1.386 1.765 2.09% 2.477 3.280 300 1.417 1.800 2.133 2.522 3.335
500 1.362 1.736 2.062 2.442 3.235 500 1.385 1.763 2.092 2.475 3.277
« 1.282 1.645 1.960 2.326 3.090 o 1.282 1.645 1.960 2.326 3.090

Source: From Owen, 1962. Used by permission.
This table is used in Section 11.3.




Statistical Tables 257

Table A4 Nonparametric 95% and 99% Confidence Intervals on a Proportion
u n=1 n=2 n=3 nek n=5 n=¢6 u
0 0 0 .95 .99 0 0 .78 .90 0 0 .63 .78 0 0 .53 .68 0 0 .50 .60 0 0 .41 .54 4]
1 .00 .05 1 1 .01 .03 .97 .99 .00 .02 .86 .94 .00 .01 .75 .86 .00 .01 .66 .78 .00 .01 .59 .71 1
2 .10 .22 11 .06 .14 .98 1 .04 ,10 .90 .96 .03 .08 .81 .89 .03 .06 .73 .83 2
3 .22 .37 1 14025 .99 1 211 .19 .92 97 .08 .15 .85 .92 3
u n=7 n=8 n=9 n=10 n=1 n=12 u
1] 0 0 .38 .50 0 0 .36 .45 0 0 .32 .43 0 0 .29 .38 0 0 .26 .36 0 0 .24 .25 0
1 .00 .01 .55 .64 .00 ,01 .50 .59 .00 .01 .44 .57 .00 .01 .&& .St .00 .00 .40 .50 .00 .00 .37 .45 1
2 .02 .05 .66 .76 .02 .05 .64 .71 .02 .04 .56 .66 .02 .04 .56 .62 ,01 .03 .50 .59 .01 .03 .46 .55 2
3 .07 .13 .77 .86 .06 .11 .71 .80 .05 ,10 .68 .75 .05 .09 .62 .70 .04 .08 .60 .66 .04 .07 .54 .65 3
4 .14 .23 .87 .93 (12 .19 .81 .88 .11 .17 .75 .83 .09 .15 .70 .78 .08 .14 .67 .74 .08 .12 .63 .70 4
S .24 .34 .95 .98 .20 .29 .89 .94 .17 .25 .83 .89 .15 .22 .78 .85 .13 .20 .7% .81 .12 .18 .71 .77 5
6 .36 .45 ,99 1 .29 .36 .95 .98 .25 .32 .90 .95 .22 .29 .85 .91 .19 .26 .80 .87 .17 .24 .76 .83 6
u n=13 n= 14 n=15 n=16 n=17 n=18 u
4 0 0 .23 .32 0 0 .23 .30 0 0 .22 .28 0 0 .20 .26 0 0 .19 .26 0r 0 .18 .25 0
1 .00 .00 .34 .43 .00 .00 .32 .42 .00 .00 .30 .39 .00 .00 .30 .36 .00 .00 .28 .35 .00 .00 .27 .34 1
2 .01 .03 .43 .52 .01 .03 .42 .5C ,01 .02 .39 .46 .01 .02 .37 .45 01 .02 .35 .43 .01 .02 .33 .41 2
3 .04 .07 .52 .59 .03 .06 .50 .58 .03 .06 .47 .54 .03 .05 .44 .52 .03 .05 .42 .50 .03 .05 .41 .47 3
4 .07 .11 .59 .68 .06 .10 .58 .64 .06 .10 .53 .61 .06 .09 .50 ,58 05 .08 .49 .57 .05 .08 .47 .53 4
S .1 .17 .66 .73 .10 .15 .63 .70 .09 .14 .61 .67 .09 .13 .56 .64 .08 .12 .54 .62 .08 .12 .53 .59 5
6 .16 .22 .74 .79 .15 .21 .68 .75 - .13 .19 .67 .72 .13 .18 .63 .70 .12 .17 .59 .66 .11 .16 .59 .66 [3
7 .21 .26 .78 .8% .19 .24 .76 .81 .18 .22 .71 .77 .17 .20 .70 .74 .16 .19 .65 .73 .15 .18 .63 .69 7
8 .27 .34 .83 .89 .25 .32 .79 .85 .23 .29 .78 .82 .21 .27 .73 .79 .20 .25 .72 .76 .18 .24 .67 .75 8
9 .32 .4t .89 ,93 .30 .37 .85 .90 .28 .33 .81 .87 .26 .30 .80 .83 24 .28 .75 .80 .23 .27 .73 .77 9
u n=19 n=20 n = 21 n =22 n=23 n =24 u
0 0 0 .17 .24 0 0 .16 .22 0 0 .15 .21 0 0 .15 .20 0 0 .14 .19 0 0 .13 .19 0
1 .00 .00 .25 .32 .00 .00 .24 .31 ,00 .00 .23 .29 .00 .00 .22 .28 .00 .00 .21 .27 ,00 .00 .20 .26 1
2 .01 .02 .32 .39 .01 .02 .32 .37 .01 .02 .30 .37 .01 .02 .29 .35 .01 .02 .27 .33 .01 .02 .26 .32 z
3 .02 ,04 .35 .46 .02 .04 .37 .44 .02 .04 .35 .42 .02 .04 .34 .40 .02 .04 .32 .39 ,02 .02 .31 .39 3
& .05 .08 .45 .52 .04 .07 .42 .50 .04 .07 .40 .47 .04 -.06 .39 .45 04 .06 .39 .45 .04 .06 .37 .43 4
S .07 .11 .50 .56 .07 .10 .47 .56 .07 .10 .46 .53 .06 .09 .45 .50 .06 .09 .43 .50 .06 .09 .41 .48 5
6 .10 .15 .55 .61 .10 .14 .53 .60 .09 .13 .51 .58 .09 .13 .50 .55 .08 .12 .48 .55 .08 .11 .46 .52 6
7 .14 .17 .61 .68 .13 .16 .58 .64 .12 .15 .55 .63 .12 .15 .55 .60 .11 .14 .52 .58 .11 .13 .50 .57 ?
8 .17 .22 .66 .71 .16 .21 .63 .69 .15 .20 .60 .66" .15 .19 .58 .65 .14 .18 .57 .62 .13 .17 .54 .61 &
9 .21 .25 .69 .76 .20 .24 .68 .73 .19 .23 .65 .71 .18 .22 .62 .68 .17 .21 .61 .67 .16 .20 .59 .64 9
10 ° .26 .31 .75 .79 .22 .29 .71 .78 .21 .28 .70 .74 .20 .26 .66n.72 .19 .25 .64 .70 .19 .23 .63 .68 10
11 .29 .34 .78 .83 .27 .32 .76 .80 .26 .30 .72 .79 .24 .29 .71 .76 .23 .27 .68 .73 .22 .26 .66 .72 11
12 .32 .39 .83 .86 .31 .37 .79 .84 .29 .35 .77 .81 .28 .34 .74 .80 .27 .32 .73 .77 .26 .31 .69 .7% 12
u n =25 n =26 n =27 n=28 n=29 n =30 u
0 0 0 .13 .18 0 ¢ .12 .17 0 0 .12 ,17 0 0 .12 .16 0 0 .11 .16 0 € .11 .16 0
1 .00 .00 ,19 .26 .00 .00 .19 .25 .00 .00 .18 .24 .00 .00 .17 .23 00 .00 .17 .22 .0G .00 .16 .22 1
2 .01 .07 .25 .31 .01 .01 .24 .30 .01 .0t .23 .30 .01 .01 .23 .29 .01 .01 .22 .28 .01 .01 .21 .27 2
3 .02 .03 .30 .37 ,02 .03 .30 .36 .02 .03 .29 .34 .02 .03 .28 .33 .02 .03 .27 .32 .01 .03 .26 .31 3
4 .03 .06 .36 .41 .03 .05 .34 .40 .03 .05 .33 .38 .03 .05 .32 .36 . .03 .05 .31 .37 .03 .05 .30 .36 4
5 .05 .08 .40 .46 .05 .08 .38 .44 .05 .08 .37 .44 .05 .07 .36 .42 .05 .07 .36 .41 .04 .07 .35 .39 S
6 .08 .11 .44 .50 .07 11 .82 .49 .07 .10 .41 .48 .07 .10 .41 .46 .07 .09 .39 .44 .06 .09 .38 .43 6
7 .10 .13 .48 .54 .10 .12 .47 .53 .09 .12 .46 .52 .09 .12 &4 50 .09 .11 .43 .48 .08 .11 .41 .47 7
8 .13 .16 .52 .59 .12 .15 .51 .56 .12 .15 .50 .56 11 .14 48 .54 11 .14 .46 .52 .10 .13 .45 .51 8
9 16 .19 .56 .63 .15 .19 .54 .60 14 .18 .54 .59 148 .17 .52 .58 .13 .17 .50 .56 .13 .16 .48 .54 9
10 .18 .22 .60 .66 .17 .21 .58 .64 .17 .20 .57 .62 .16 .19 .56 .62 16 .18 .54 .59 .15 .18 .52 .57 16
1 .21 .25 .64 .69 .19 .24 .62 .68 .18 .23 .60 .66 .18 .23 .59 .64 17 .22 .57 .63 .16 .21 .55 .61 1i
12 .25 .30 .68 .74 .23 .28 .66 .70 .22 .27 .63 .70 .21 .26 .62 .67 .21 .25 .61 .65 .20 .24 .59 .64 12
13 .26 .32 .70 .75 .25 .30 .70 .75 .24 .29 .67 .72 .23 .28 .65 .71 22 .27 .64 .68 .22 .26 .62 .67 13
14 .31 .36 .75 .79 W30 34 .72 .77 .28 .33 .71 .76 .27 .32 .68 .73 26 .31 .6€ .72 .25 .30 .65 .69 14
15 34,40 .78 .82 .32 .38 .76 .81 .30 .37 .73 .78 .29 .35 .72 .77 .28 .34 .69 .74 .27 .32 .68 .73 15

Source: After Blyth and Still, 1983.
Inner entries give the 95% interval, and outer entries the 99% interval. For example, forn = 13, u = 3, the 95%
interval is (0.07, 0.52) and the 99% interval is (0.04, 0.59). n
that exceed some specified value x,.
This table is used in Section 11.11.

number of observations. u =

number of those
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Table A5 Quantiles of the Rank von Neumann Statistic R,

T Ro.005 Ry.010 Ro.025 Ro.050 Ro.100
10 0.62 0.72 0.89 1.04 1.23
1 0.67 0.77 0.93 1.08 1.26
12 0.71 0.81 0.96 1.1 1.29
13 0.74 0.84 1.00 1.14 1.32
14 0.78 0.87 1.03 1.17 1.34
15 0.81 0.90 1.05 1.19 1.36
16 0.84 0.93 1.08 1.21 1.38
17 0.87 0.96 1.10 1.24 1.40
18 0.89 0.98 1.13 1.26 1.41
19 0.92 1.01 1.15 1.27 1.43
20 0.94 1.03 1.17 1.29 1.44
21 0.96 1.05 1.18 1.31 1.45
22 0.98 1.07 1.20 1.32 1.46
23 1.00 1.09 1.22 1.33 1.48
24 1.02 1.10 1.23 1.35 1.49
25 1.04 1.12 1.25 1.36 1.50
26 1.05 1.13 1.26 1.37 1.51
27 1.07 1.15 1.27 1.38 1.51
28 1.08 1.16 1.28 1.39 1.52
29 1.10 1.18 1.30 1.40 1.53
30 1.11 1.19 1.31 1.41 1.54
32 1.13 1.21 1.33 1.43 1.55
34 1.16 1.23 1.35 1.45 1.57
36 1.18 1.25 1.36 1.46 1.58
38 1.20 1.27 1.38 1.48 1.59
20 1.22 1.29 1.39 1.49 1.60
42 1.24 1.30 1.1 1.50 1.61
a4 1.25 1.32 1.42 1.51 1.62
46 1.27 1.33 1.43 1.52 1.63
a8 1.28 1.35 1.45 153 - 1.63
50 1.29 1.36 1.46 1.54 1.64
55 1.33 1.39 1.48 1.56 1.66
60 1.35 1.41 1.50 1.58 1.67
65 1.38 1.43 1.52 1.60 1.68
70 1.40 1.45 1.54 1.61 1.70
75 1.42 1.47 1.55 1.62 1.71
80 1.44 1.49 1.57 1.66 1.7
85 1.45 1.50 1.58 1.65 1.72
90 1.47 1.52 1.59 1.66 1.73
95 1.48 1.53 1.60 1.66 1.74

100 1.49 1.54 1.61 1.67 1.74

Source: From Bartels, 1982. Used by permission.
This table is used in Section 11.13.
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Table A6 Coefficients a; for the Shapiro-Wilk W Test for Normality

in 2 3 L] 5 6 7 8 9 10 i
{ !

0.7071  0.7071 0.6872 0.6646  0.6431 0,6233 0.6052 0.5888 0,5739
- 0.0000 0.1677 0,2413 0.2806 0.3031 0.3164 0.3244  0,3291

- - 0.0000 0.0875 0.1401  0,17843 0,197¢ 0.2141

- - 0.0000 0,0561 0.0947 0.1224

- - 0.0000 0.0399

1

2

3 -

4 - - -
s - - -

12 13 14 15 16 17 18 19 20

0.5601  0.5475 0,5359 0.5251  0,5150 0.5056 0.4968  0,4886 0,4808 0.4734
0.3315  0,3325 0,3325 0.3318  0.3306 0.3290 0.3273  0.3253 0.3232 0.3211
0.2260 0.2347 0.2412 0.2460 0.2495 0.2521 0.2540  0,2553  0.2561 0,2565
0.1429  0.1586 0.1707 0.1802 0.1878 0.1939 0.1988  0,2027 0.2059 0.2085
0.0695 0.0922 0.1099 0.1240  0,1353  0.1447 0.1524  0.1587  0.1641 0.1686
0.0000 0.0303 0,053 0.0727  0.0880 0.1005 0.1109  0,1197  0.1271 0.1334
- - 0.0000 0.0240 0,033 0.0593  0,0725 0,0837 0.0932 0,1013

- 0.0000 0.019% 0.0359 0.0496  0.0612 0.0711

- - 0.0000 0.0163 0.0303 0.0422

Py
CWEINRUFWA = [-/
-1
-

no21 22 23 2% 25 26 27 28 29 30

1\

1 0.4643  0.4590 0,4542 0.4493  0.4450 0,4407 0.4366  0.4328 0.4291 0.4254

2 0.3185 0.3156¢ 0.3126 0.3098 0,3069 ©0.3043 0.3018  0.2992 0.2968 0.2944

3 0.2578  0.2571 0.2563 0.2556  0.2543 0.2533 0.2522  0.2510 0.,2499 0.2487

A 0.2119  0,2131  0.2139 0.2145  0.2148 0,215 0.2152  0.2151  0.2150 0.2148

5 0.1736 0.1764 0.1787 0.1807 0.1822 0.1836 0.1846  0.1857 0,1864 0.1870

€ 0.1399  0.1443 0.1480 0.1512  0.1533 0.15¢3 0.1584  0.1601 0.1616 0.1630

70,1092 0,1150 0.1201 0.1245  0.1283 0.131¢ 0.1346  0.1372  0.1355 0.1415 s
8 0.080¢ 0,0878 0.0941 0.0997 «1066  0,1089 0,1128 0.1162  0.1192 0.1219

9 0.0530 0.0618 0.0696 0.0764 0.0823 0.06876 0.0923  0.0965 0.1002 0.1036 |
10 0.0263 10,0368 0.0459 0.0539  0,0610 0.0672 0.0728  0,0778 0.0822 0.0862 :
11 0.0000 0.0122 0.0228 0.0321  0,0403 0.0476 0.0540 0,058 0.0650 0.0697 :
12 - - 0.0000 0.0%107 <0200 * 0.028% 0,0358 0.0424  0.0483 0.0537
13 - - - - 0.0000 0.00% 0,0178 0.0253  0.0320 0,0381
14 - - - v . - - 0.0000 0.008% . 0.0159 0.0227
15 - - - - - - - - 0.0000 0.0076

Source: From Shapiro and Wilk, 1965. Used by permission.
This table is used in Section 12.3.1.
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Table A6 (continued)

K N 32 33 34 35 36 37 38 39 40
i

1 0.4220 0.4188 0.4156 0.4127 0.4096 0.4068 0.M040 0.4015 0.3989 0.3964
2 0.2921 0.2898 10,2876 0.2854 0.2834 0.2813 0.279% 0.277&4 0.2755 0.2737
3 0.2475 0.2462 0.2451 0.2439 0.2427 0.2415 0.2403 0.2391 0.2380 0.2368
A 0.21A5  0.2141  0.2137 0.2132 0.2127 0.2121 0.2116 0.2110 0.210%  0.2098
5 0.1874 0.1878 0.1880 0.,1862 0.1883 0,1883 0.1883 0.1881 0.1880 0.1878
6 0.1641 0.1651 0.1660 0.1667 0.1673 0.1678 0.1683 0.1686 0.1689 0.1691
7
8
9

0.1433  0.1449  0.1463 0.1475 0.1487 0.1496 0.1505 0.1513 0.1520 0.1526
0.1243  0,1265 0.1284 0.1301  0.1317 0.1331  0.138% 0.1356 0.1366 0.1376
0.1066 0.1093 0.1116 0.1140 0.1160 0.1179 0.119%6 0.1211  0.1225 0.1237
10 0.0899 0.0931 0.0961 0.0988 0.1013 0,1036 0.1056 0.1075 0.1092 0.1108
11 0.0739  0,0777 0,0812 0.084% 0.0873 0.0900 0.0924 0.0947 0.0967 0.0986
12 0.0585 0.0629 0.0669 0.0706 0.0739 0.0770 0.0796 0.0824 0.0848 0.0870
13 0,0435 0.0485 0.0530 0.0572 0.0610 0.0645 0.0677 0.0706 0.0733 0.0759
14 0.0289 0.034% 0.0395 0.0441 0.0484 0.0523 0.0559 0.0592 0.0622 0.0659
15 0.0144 0.0206 0.0262 0.0314 0.0361 0.040k 0.044% 0.0481 0.0515 0.0546

16 0.0000 0.0068 0.0131 0.0187 0.0239 0.0287 0.0331 0.0372 0.0409 0.0444
17 - - 0.0000 0.0062 0.0119 0.0172 0.0220 0.0264 0.0305 0.0343
18 - - - - 0.0000 0.0057 0.0110 0.0158 0.0203 0.0244
19 - - - - - - 0.0000 0.0053 0.0101 0.0146
20 - - - - - - - - 0.0000 0.0049
N L3 42 43 L1 AS L3 A7 48 49 50

i

1 0.3%0 0.3917 0,389 0.3872 0.3850 0.3830 0,3808 0.3789 0.3770 0.3751
20,2719 0.2701 0.268%4 0.2667 0.2651 0.2635 0.2620 0.2604 0.2589 0.2574
30,2357 0.234%5 0.233% 0.2323 0.2313 0.2302 0.2291 0.2281 0.227% 0.2260
4 0.2091 0.2085 0.2078 0.2072 0.2065 0.2058 0.2052 0.2045 0.2038 0.2032
5 0.1876 0.,1874 0.1871 0.1868 0.1865 0.1862 0.185% ©0.1855 0.1851 0.1847
6 0,1693 0.169% 0.1695 0.1695 0.1695 0.1635 0,1695 0.1693 0.1692 0.1691
7 0.1531  0.1535 0.1539 0.1542 0.1545 0.1548 0.1550 0.1551 0.1553 0.155%
8 0.138% 10,1392 0.1398 0.1405 0.1410 0.1815  0.1420 0.1423  0.1427 0.1430
9 0.1249 0.1259 0.,1269 0.1278 0.1286 0.1293 0.1300 0.1306 0,131z 0.1317

10 0,1123 0.1136 0.1149 0.1160 0.1170 0.1180 0.1189 0.1197 0.1205 0.1212
10,1004 0.1020 0.1035 0.1049 0.1062 0.1073 0.1085 0.1095 0,1105 0.1113
12 0,089t 0.0909 0.0927 0.0943 0.0959 0,0972 0.0986 0.0998 0.1010 0.1020
13 0.0782 0.0804 0.0824 0.0842 0.0860 0.0876 0.0892 0,0906 0.0919 0.0932
14 0.0677 0.0701 0.0724 0.0745 0.0765 0.0783 0.0801 0.0817 0.0832 0.0846
15 0.0575 0.0602 0.0628 0.0651 0.0673 0.069% 0.0713 0.0731 0.0748 0.0764
16 0.0476 0.0506 0.053%4 0.0560 0.0584 0.0607 0.0628 0.0648 0.0667 0.0685
17 0.0379 0.0411 0.0442 0.0471 0.0497 0,0522 0.0546 0.0568 0.0588 0.0608
18 0,0283 10,0318 0.0352 0.0383 0.0412 0.0439 0.0465 0.0483 0.0511 0.0532
19 0.0188 0.0227 0.0263 0.0296 0.0328 0.0357 0.0385 0.0411  0.0436 0.0459
20 0.009% 0.0136 0.0175 0.0211 0.0245 0.0277 0.,0307 0.0335 0.0361 0.0386
21 0.0000 0.0045 0,0087 0.0126 0.,0163 0.0197 0.0229 0.0259 0.0288 0.0314

2 - - 0.0000 0.0042 ©0.0081 0.0118 0.0153 0.0185 0.0215 0.024%
3 - - - - 0.0000 0.0039 0.0076 0.0111 0.01a3 0.0174
2 - - - - -

0.0000 0.0037 0.0071 0.0104%
- - - - - 0.0000 0.0035

et kL
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Table A7 Quantiles of the Shapiro-Wilk W Test for Normality (Values of W Such That 100p%
of the Distribution of W Is Less Than W)

n %o.01 %.02 ¥o.05 .10 %o.50

3 0.753 0.756 0.767 0.789 0.959

4 0.687 0.707 0.748 0.792 0.935

5 0.686 0.715 0.762 0.80¢ 0.927

6 0.713 0.743 0.788 0.826 0.927

7 0.730 0.760 0.803 0.838 0.928

8 0.749 0.778 0.818 0.851 0.932

9 0.764 0.791 0.829 0.859 0.935

10 0.781 0.806 0.842 0.869 0.938

1 0.792 0.817 0.850 0.876 0.940

12 0.805 0.828 0.859 0.883 0.943

13 0.814 0.837 0.866 0.889 0.945

14 0.825 0.846 0.874 0.895 0.947

15 0.835 0.855 0.881 0.901 0.950

16 0,844 0.863 0.887 0.906 0.952 |
17 0.851 0,869 0.892 0.910 0.954

18 0.858 0.874 0.897 0.914 0,956

19 0.863 0.879 0.901 0.917 0.957

20 0.868 0.884 0.905 0.920 0.959

21 0.873 0,888 0.908 0.923 0.960

22 0.878 0.892 0.911 0.926 0.961 |
23 0.881 0.895 0.914 0.928 0.962

24 0.884 0.898 0.916 0.930 0.963 i
25 0.886 0.901 0.918 0.931 0.964

26 0.891 0.904 0.920 0.933 0.965 !
27 0.894 0.906 0.923 0.935 0.965 i
28 0.896 0.908 0.924 0.936 0.965 !
29 0.898 0.910 0.926 0.937 0.966 i
30 0.900 0.912 0.927 0.939 0.967 !
31 0.902 0.914 0.929 0.940 0.967

32 0.904 0.915 0.930 0.941 0.968

33 0.906 0.917 0.931 0.942 0.968

34 0.908 0,919 0.933 0.943 0.969

35 0,910 0.920 0.934 0.944 0.969

36 0.912 0.922 0.935 0.945 0.970

7 0.914 0.924 0.936 0.946 0.970

38 0.916 0.925 0.938 0.947 0.971

39 0.917 0.527 0.939 0.948 971

40 0.919 0.928 0.940 0.949 0.972

[} 0.920 0.929 0.941 0.950 0.972 it
42 0.922 0.930 0.942 0.551 0.972

43 0.923 0.932 0.943 0.951 0.973

i 0.924 0.933 0.944 0.952 0.973

45 0.926 0.934 0.945 0.953 0.973

46 0.927 0.935 0.945 0.953 0.974

&7 0.928~ 0.93¢ 0.946 0.954 0.974

48 0,929 0.937 0.947 0.954 0.974

49 0.929 0.937 0.947 0,955 0.97%

50 0.930 0.938 0.947 0.955 0.974

Source: After Shapiro and Wilk, 1965.

The null hypothesis of a normal distribution is rejected at the o significance level if the calculated W is less than
W,.

This table is used in Section 12.3.1.
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Table A8 Quantiles of D’Agostino’s Test for Normality (Values of Y Such That 100p% of the
Distribution of Y is Less Than Y))

n Y0.005 Y0.01 Y0.025 Y0.05 Y0.10 YO.SO Y0.95 '0.975 Y().99 Y0.995

50 -3.949 ~3.442 -2.757 -2.220 -1.661 0.759 0.923 1.038 1.1480 1.192
60 -3.846 -3.360 -2.699 -2.179 -1.634% 0.807 0.986 1.115 1.236 1.301
70 -3.762 -3.293 -2.652 ~2.146 -1.612 0.844 1.036 1.176, 1.312 1.388
80 -3,693  -3.237 -2.613 -2.118 -1.59% 0.874 1.076 1.226 1.374 1.453
90 -3.635 ~3.100 -2.580 ~2.095 -1.579 0.899 1.109 1.268 1.426 1.518
100 -3.584 -3.150 ~2.552 -2,075 -1.566 0.920 1.137 1.303 1.470 1.569
150 -3.809 -3.,009 -2.452 -2,004 -1.520 0.990 1.233 1.423 1.623 1.746
200 -3.302 -2.,922 -2.39 -1.960 -1.491 1.032 1.290 1.496 1.715 1.853
250 -3.227 -2.861 -2.348 -1.926 -1.471 1.060 1.328 1.545 1.779 1.927
300 -3.172 -2.816 -2.316 -1.906 ~1.456 1.080 1.357 1.528 1.826 1.983
350 -3.129 -2.781 -2.291 -1.888 -1.444 1.096 1.379 1.610 1.863 2.026
400 -3.09% -2.753 -2.270 -1.873 ~1.434 1.108 1.39% 1.633 1.893 2.061

450 -3.064 -2.729 ~2.253 -1.861 -1.426 1.119 1.411 1.652 1.918 2.090
500 ~3.040 ~2.709 -2.239 -1.850 -1.419 1.127 1.423 1.668 1.938 2,114
550 -3.019 -2.691 -2.226 -1.841 -1.413 1.135 1.434 1.682 1.957 2.136

600 -3.000 -2.676 -2.215 -1.833 ~1.408 1.141 1.443 1.694 1.972 2.154
650 -2.984 -2.663 -2.206 -1.826 -1.403 1.147 1.451 1.704 1.986 27N
700 -2.969 -2.651 -2.197 -1.820 -1.399 1.152 1.458 1.714 1.999 2.185
750 -2.956 -2.640 -2.189 -1.814 -1.395 1.157 1.465 1.722 2.010 2.199
800 ~2.9%% -2.630 -2.182 -1.809 -1.392 1.161 1.471 1.730 2.020 2.211
850 -2.933 -2.621 -2.17¢6 -1.804 -1.389 1.165 1.476 1.737 2.029 2.2
900 -2.923 -2.613 -2.170 -1.800 -1.386 1.168 1.481 1.743 2.037 2,231
950 -2.914 -2.605 -2.164 -1.796 -1.383 1.7 1.485 1.749 2.045 2.241%
1000 ~2.906 -2.59% -2.159 -1.792 -1.381 1.17& 1.489 1.75% 2.052 2.249

Source: From D’Agostino, 1971. Used by permission.

The null hypothesis of a normal distribution is rejected at the « significance level if the D’Agostino test statistic Y
is less than Y, or greater than Y, _,p.

This table is used in Section 12.3.2.
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Table A9

Multiplying Factor ¥(t) for Estimating the Lognormal Mean and Variance

Number of Samples (n)

t 2 ) 8 10 13 15 20 25 30 50 70 90 100 150 200 500 @
0.05 1.025 1.0481 1,045 1.046 1.047 1.048 1,068 1.049 1.049 1.050 1.050 1.051 1.051 1.057 1.051 1.051 '1.051
0.10 1.050 1.082 1.091 1.093 1.096 1.097 1.099 1.100 1.101 1.103 1,103 1,104 1.10%4 1.104 1,105 1.105 1.105
0.15 1,076 1.125 1,138 1.143 1,147 1,149 1,152 1.15% 1,155 1,158 1.159 1.160 1,160 1.160 1.161 1.161 1.162
0,20 1.102 1.169 1,187 1,19 1,200 1.203 1,207 1.210 1.2912 1.216 1.217 1,218 1,218 1.219 1,220 1.221 1.221
0.25 1,128 1.214 1,238 1.247 1,255 1,259 1,265 1.268 1,271 1,276 1.278 1,280 1,280 1.281 1.282 1.283 1.28%
0.30  1.154  1.260 1.291 1,302 1.312 1.317 1,325 1.330 1,333 1,340 1.342 1,344 1,345 1,386 1.347 1.349 1.350
0.35 1.180 1.307 1.345 1,359 1,372 1.378 1.387 1.393 1,398 1.506 1.410 1.812 1,412 1.815 1.816 1.418 1.819
0.40 1.207 1.356 1.401 1.418 1,433 1,441 1,453 1,860 1,465 1.476 1.480 1,483 1,484 1,486 1.488 1.490 1.492
0.45 1.234 1,406 1,459 1.479 1.498 1,506 1.521 1.530 1.536 1,548 1,554 1,557 1,558 1.562 1.563 1.566 1.568
0.50  1.261 1.457 1.519 1,562 1,564 1,57 1.592 1.602 1,610 1,625 1.63%1 1,635 1,637 1.641 1.643 1.646 1.649
0.55 1.288 1.509 1,581 1.608 1.633 1,645 1.666 1.678 1.687 1,705 1,713 1,717 1,719 1.7264 1.726 1.730 1.733
0.60 1.315 1.563 1.645 1,675 1.705 1.719 1,743 1,757 1.768 1,789 1.798 1.803 1.805 1.811 1.814 1.819 1.822
0.65 1.343  1.618 1,711 1,746 1,780 1.796 1.823 1,840 1.852 1.876 1.887 1.893 1,896 1,902 1.905 1.912 1.916
0.70 1.371 1.675 1.779 1.818 1.857 1.876 1.907 1,926 1.940 1.968 1.981 1,988 1.990 1.998 2.002 2.009 2.01%
0.75 1,399 1.733 1,849 1.89% 1,938 1.958 1.99% 2.016 2.032 2,064 2.079 2,087 2.080 2.099 2.103 2.111 2.117
0.80 1,827 1,792 1.922 1.971 2.021 2.045 2.085 2.110 2.128 2.165 2.182 2,191 2.194% 2,205 2.210 2.219 2.226
0.85 1.456 1.853 1,996 2.052 2,108 2.134 2,179 2.208 2,228 2,270 2,289 2.300 2.304 2,316 2.322 2.332 2.340
0.90 1.485 1,915 2.07% 2.135 2,197 2.227 2.278 2.310 2,333 2.381 2,402 2.414 2,419 2,832 2.439 2.451 2.460
0.95 1.514  1.979 2,153 2.221 2.291 2,323 2.380 2.417 2.442 2,496 2.521 2,534 2.540 2.554 2,562 2.708 2.586
1.00  1.543 2,084 2,235 2,310 2,387 2,424 2,487 2,528 2.556 2.617 2.644 2,660 2.666 2.683 2.692 2.576 2.718
1,05 1.573  2.111  2.320 2,403 2.487 2,520 2.598 2.644 2.676 2,744  2.77% 2,792 2.798 2.818 2.828 2.845 2.858
1,10 1.602 2.180 2,407 2.498 2.591 2.636 2.714 2,765 2,800 2.876 2.911 2,930 2.938 2,959 2.970 2.990 3.004
1.15  1.632 2.250 2,497 2,596 2,698 2,748 2.83% 2.891 2.930 3,014 3,053 3,076 3.083 3.108 3.120 3.143 3.158
1.20  1.662 2.321 2.589 2.698 2.810 2,864 2,960 3.022 3.066 3.159 3,203 3.228 3.237 3,263 3.277 3.303 3.320
1.25  1.693 2.395 2.685 2,803 2.926 2,985 3.090 3.159 3.207 3,311 3.359 3.387 3,397 3,427 3.842 3.471 3.490
1.30 1,724 2,470 2,783 2,911 3,045 3,111 3,226 .3.301 3,35 3,470 3.523 3,554 3.565 3.599 3.616 3.648 3.669
1.35 1,754 2,547  2.884 3,023 3,169 3.241 3,367 3.450 3.508 3,636 3.695 3.729 3.741 3,779 3.798 13.833 3.857
1.0 1,786 2.626 2.988 3.139 3,298 3,376 3.514 3,604 3.669 3.809 3.875 3.912 3.926 3.968 3.989 4.028 4.055
1.5 1.817 2,706 3.096 3,259 3,431 3,515 3,666 3.766 3.836 3.991 4,063 4,105 4.120 4,166 4.189 4.233 4,263
1.50  1.849 2,788 3.206 3.382 3,569 3.661 3.825 3.933 4.011 4.181 4,260 4,306 4,323 5,376 4.400 4.h&8  &.482
1.55 1.880 2.873 3,320 3,510 3,711 3.811 3,990 4,108  4.193 4.379 4,467 4,518 4.536 4.592 4.621 &.675 4.712
1.60  1.913 2,959 ° 3.437 3,642 3.859 3,967 4.161 4,291 ' 4,383 4,587 4,683 4.739 4,759 4,821 4.853 4.912 4.953
1.65  1.945  3.0487 3,558 3,777 4.012 4,129 4,339 4.480 4.581 4.80% 4,910 4,971 4,993 5.062 5.097 5.162 5.207
1,70 1.977 3,137 3,682 3.918 4,171 4,297 4,525 4.678 4.787 5.031 S5.147 5.215 5,239 5,314 5.352 5.424 5.47%
1.75 2,010 3.229 3.810 4,062 4,334 4,471 4,717 4.883 5,003 5,269 5.395 5.469 5.496 5.578 5.621 5.700 5.755
1.80 2.083  3.323 3,942 4,212 4,506 4,657 4,917 5,097 5.228 5.517 5.655 5,736 5.766 5.856 5.903 5.990 6.050
1.85 2,077  3.420 4.077 4,366 4.680 4.838 5.125 5,320 S.461 5,776 5.928 6.016 6.048 6.147 6.198 6.29%  6.360
1,90 2.110 3.518 4,216 4.525 4,861 5,031 5,341 5.552 5.705 6.048 6.212 6.309 6.34% 6.453 6.509 6.613 6.686
1.95 2,144 3,619 4,359 4,688 5.089 5,232 5.566 5.79% 5.959 6.331 6.511 6.616 6.655 6.773  6.834 6.949 7.029
2.00 2.178  3.721 4,506 4.857 5.243 5,439 5,799 6.045 6.224 6.628 6.823 6.938 6.980 7.109 7.176 7.302 7.389

Source: After Koch and Link, 1980 and Aitchison and Brown, 1968.
This table is used in Section 13.1.1.
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Values of H,_, = Hgygy for Computing a One-Sided Upper 90% Confidence Limit

Table A10
on a Lognormal Mean
sy 3 5 7 10 12 15 21 3 51 101
0.10 1.686 1.438 1.381 1.349 1.338 1.328 1.317 1.308 1.301 1.295
0.20 1.885 1.522 1.442 1.396 1.380 1.365 1.348 1.335 1.324 1.314
0.30 2,156 1.627 1.517 1.453 1.432 1.411 1.388 1.370 1.354 1.339
0.40 2.521 1.78 1.607 1.523 1.494 1.467 1.437 1.812 1.390 1.371
0.50 2.990 1.907 1.712 1.604 1.567 1.532 1.494 1.462 1.434 1.409
0.60 3.542 2.084 1.834 1.69€ 1.650 1.606 1.558 1.519 1.485 1.454
0.70 4.136 2.284 1.970 1.800 1.743 1.690 1.631 1.583 1.541 1.504
0.80 4.742 2.503 2.119 1.91% 1.845 1.781 1.710 1.654 1.604 1.560
0.90 5.349 2.736 2.280 2.036 1.955 1.880 1.797 1.731 1.672 1.621
1.00 5.955 2.980 2.450 2.167 2,073 1.985 1.889 1.812 1.745 1.686
1.25 7.466 3.617 2.904 2.518 2,391 2.271 2.4 2.036 1.94€ 1.866
1.50 8.973 4,276 3.383 2.896 2.733 2.581 2.415 2,282 2,166 2.066
1.75 10.48 4.944 3.877 3.289 3.092 2,907 2.705 2.543 2.402 2.279
2.00 11.98 5.619 4,380 3.693 3.461 3.244 3.005 2.814 2.648 2.503
2.50 14.99 6.979 5.401 4.518 4,220 3.938 3.629 3.380 3.163 2.974
3.00 16.00 8.346 6.434 5.359 4.99%4 4.650 4.270 3.964 3.697 3.463
3.50 21.00 9.717 7.473 6.208 5.778 5.370 4.921 4,559 4,242 3.965
4.00 24.00 11.09 8.516 7.062 6.566 6.097 5.580 5.161 4.796 &.474
4.50 27.00 12.47 9.562 7.919 7.360 6.829 6.243 5.769 5.354 4,989
5.00 30.01 13.84 10.61 8.779 8.155 7.563 6.909 6.379 5.916 5.508
6.00 36.02 16.60 12.71 10.50 9.751 9.037 8.248 7.607 7.048 6.555
7.00 42.02 19.35 14.81 12,23 11.35 10.52 9.592 8.842 8.186 7.607
8.00 48.03 22.11 16.91 13.96 12.96 12.00 10.94 10.08 9.329 8.665
9.00 54.03 24 .87 19.02 15.70 14.56 13.48 12.29 11.32 10.48 9.725
10.00 60.04 27.63 21.12 17.43 16.17 14,97 13.64 12.56 11.62 10.79

Source: After Land, 1975.
This table is used in Section 13.2.

a Lognormal Mean

Table A11  Values of H, = H,,, for Computing a One-Sided Lower 10% Confidence Limit on

sy 3 s 7 10 12 15 i) 3 51 101
0.10  -1.431 -1.320 -1.296 -1.285 -1.281 -1.279  -1.277  -1.277 -1.278 -1.279
0.20 -1.350 -1.281 -1.268  -1.266 -1.266 -1.266 -1.268 -1.272 -1.275 -1.280
0.30 -1.289 -1.252 -1.250 -1.254 -1.257 -1,260 -1.266 -1.272 -1 .280 -1.287
0.40  -1.245 -1.233  -1.239  -1,249 -1.254 -1.261 -1.270 =-1.279 -1 -289  -1.301
0.50 -1,213 -1.221 -1.23%  -1.250 -1,257 -1.266 -1.279 -1.291 -1.304 ~1.319
0.60 -1.190 -1.215 -1.235 -1.256 -1.266 -1.277 -1.292 -1.307 -1.324  -1,342
0.70  -1.176  -1.215 -1.241 -1.266 -1.278 -1.292 -1.310 -1.329 -1.389  -1.370
0.80 -1.168 -1.219 -1.251 -1,280 -1.29% -1.311 -1.332 -1.354 =1.377  -1.403
0.90 -1.165 -1.227 -1.264 -1.298 -1.314 -1.333 -1.358 -1.383 -1 409 -1.439
1.00 -1.166 -1,239 -1.281 -1.320 -1.337 -1.358 -1.387 -1.h1& -1 445 -1.478
1.25  -1.18%  -1,280 -1.334 -1,384 -1.407 -1.43% -1.470 -1.507 -1 547 -1.589
1.50  -1.217  -1.334 -1.400 -1.462 -1.491 -1.523 -1.568 -1.613 -} .063  -1.716
1.75  -1.260 -1.398 -1.477 -1,551 -1.585 -1.62% -1.677 -1.732 -1.790 -1.855
2.00  -1.310 -1.470 -1.562 -1.647 -1,688 -1.733 -1.795 -1.859 ~1.928 -2,003
2.50 -1.426 -1.63& -1.751 -1.862 -1.913 -1.971 -2.051  -2.133 -2,223 -2.321
3.00 -1.560 -1.817 -1.960 -2.095 -2.157 -2.229 -2.326 -2.427 -2.536 -2.657
3.50 -1.710 -2.014 -2.183 -2.34&1 ~2.415  -2.499 -2.615 -2.733  -2.864 -3.007
4.00 -1.871 -2.221  -2.8415 -2.596 -2.681 -2.778 -2.913 -3.050 -3.200 -3.366
4.50 -2.041 -2.435 -2.653 -2.858 -2.955 -3.064 -3.217 ~3.372 -3.542 -3.731
5.00 -2.217 -2.65% -2.897 -3.126 -3.233 -3.356 -3.525 -3.698 -3.889 -5.100
6.00 -2,58t ~3.106 -3.396 -3,671 ~3.800 -3.949  -4,153 -4.363 -4.594 -4.849
7.00  -2.955 -3,564 -3.904 -4.226 -4.377 -4.549 -4.790 -5.037 -5.307 -5.607
8.00 -3.336 -4,030 -4.418 -4.787 -4.960 -5.159 -5.433 -5.715 -6.026 -6.370
9.00 -3.721 -4.,500 -4,937 -5.352 -5.547 -5.771 -6.080 -6.399 -6.748 -7.136
10.00 -4,109 -4.973 -5.459 -5.920 -6.137 -6.386 -6.730 -7.085 -7.474 -7.906

Source: After Land, 1975.
This table is used in Section 13.2.




Table A12 Values of H,_, = Hggs for Computing a One-Sided Upper 95% Confidence Limit
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on a Lognormal Mean

s, 3 5 7 10 12 15 21 31 51 i1
f

0.10 2.750_  2.035 1.886 1.802 1.775 1.749 1.722 1.701 1.684 1.670
0.20 3.295 -+ 2.198 1.992 1.881 1.843 1.809 1.771 1.782 1.718 1.697
0.30 4.109 2.402 2,125 1.977 1.927 1.882 1.833 1.793 1.761 1.733
0.40 5.220 2.651 2.282 2.089 2.026 1.968 1.905 1.856 1.813 1.777
0.50 6.495 2.9%7 2.465 2,220 2.1481 2.068 1.989 1.928 1.876 1.830
0.60 7.807 3.287 2.673 2.368 2.271 2.181 2.085 2.010 1.946 1.89
0.70 9.120 3,662 2.904 2.532 2.414 2.306 2.1 2,102 2.025 1.960
0.80 10.43 4.062 3.155 2.710 2,570 443 2.307 2.202 2.112 2.035
0.90 11.74 b 478 3.420 2,902 2,738 é.SBS 2.432 2.310 2.206 2,117
1.00 13.05 4.905 3.696 3.103 2.915 2.744 2.564 2.423 2.306 2.205
1.25 16.33 6.001 & 026 3.639 3.389 3.163 2.923 2.737 2.580 2,447
1.50 19.60 7.120 5.184 4,207 3.896 3.612 ian 3.077 2.881 2.713
1.75 22,87 8.250 5.960 4,795 A 422 4,081 3.719 3.437 3.200 2.997
2.00 26.14 9.387 6.747 5.396 4.962 4.564 4,181 3.812 3.533 3.295
2.50 32.69 11.67 8.339 6.621 6.067 5.557 5.013 4.588 4.228 3.920
3.00 39.23 13.97 9.945 7.864 7.19 6.570 5.907 5.388 A.947 4.569
3.50 45.77 16.27 11.56 9.118 8.326 7.596 6.815 6.201 5.681 5.233
4.00 52.31 18.58 13.18 10.38 9.469 8.630 7.731 7.024% 6.424 5.908
4.50 58.85 20.8 14.80 11.6% 10.62 9.669 8.652 7.854 7.17% 6.590
5.00 65.39 23.{5 16.43 12.91 1.77 10.71 9.579 8.688 7.929 7.272
6.00 78.47 27.81 19.68 15.45 14.08 12.81 11.44 10.36 9.449 8.661
7.00 91.55 32.43 22.9% 18.00 16.39 14.90 3. 12.05 10.98 10.05
8.00 104.6 37.06 26,20 20.55 18.71 17.01 15.18 13.7% 12.51 11.45
9.00 17.7 41.68 29,46 23.10 21.03 19.11 17.05 15.43 14.05 12.85
10.00 130.8 46.31 32.73 25,66 23.35 21.22 18.93 17.13 15.59 14.26

Source: After Land, 1975.
This table is used in Section 13.2.

Table A13 Values

of H, = Hygs for Computing a One-Sided Lower 5% Confidence Limit
on a Lognormal Mean

:y 3 5 7 10 12 15 21 E)] 51 101
0.10 -2.130 -1.806 -1.731 ~1.690  -1.677 -1.666 -1.655 -1.648 ~-1.64% ~1.6A2
0.20 -1.949 -1.729 -1.678 -1.653 -1.646 -1.640 -1.636 ~-1.636 -1 637  -1.6Mm1
0.30 -1.816 -1.669 -1.639 -1.627 -1.625 -1.625 -1.627 -1.632 -1 638 -1.648
0.40  -1.717 -1.625 -1.611 -1.611 -1.613 -1.617 -1.625 -1 635 -1.647 -1.662
0.50 -1.6M4 -1.59% -1.59% -1.603 -1.609 -1.618 ~-1.631 -1 646 -1.663 -1.683
0.60 -1.589 -1.573 -1.584 -1.602 -1.612 -1.625 -1.6A3 -1.662 -1 685 -1.711
0.70  -1.549 -1.560 -1.582 -1.608 -1.622 -1.638 -1.661 -1 686 -1.713  -1.744
0.80 -1.521 -1.555 -1.586 -1.620 -1.636 -1.656 -1.685 -1.714 -1.747 -1.783
0.90 -1.502 -1.556 -1.595 -1.637 -1.656 -1.680 -1.713 -1 747 -1.785 -1.826
1.00  -1.490 -1.562 -1.610 -~1.658 -1.68B1 -1.707 -1.745 -1.764 -1 827 -1.87%
1.25 ~1.486 -1.596 -1.662 -1.727 -1.758 -1.793 -1.842 -1.893 -1.949  -2.012
1.50 -1.508 -1.650 -1.733 -1.814 -1.853 -1.896 ~-1.958 -2.020 ~2.091 -2.169%
1.75  -1.547 -1.719 -1.819 -1.916 -1.962 -2.015 -2.088 -2.164 ~2.247 -2.3m1
2.00 -1.598 -1.799 -1.917 -2,029 -2.083 -2.14% -2.230 -2.318 -2.416 -2.526
2.50 -1.727 -1.986 -2.138 -2,283 -2,351 -2.430 -2.540 ~2.654 -2.780 -2.921
3.00 -1.880 -2.199 -2.38F -2.560 -2.6Mh -2.740 -2.87% -3.014 -3.169 -3.342
3.50 -2,051 -2.429 -2.6A7 -2.B55 -2.953 -3.067 -3.226 -3.391 -3.574 -3.780
400 -2.237 -2.672 -2.922 -3.161 -3.275 -3.406 -3.589 -3.779 -3.990 -4.228
450 -2.A3% -2.926  -3.206 -3.476 -3.605 -3.753 -3.960 -4.176 -A.416 -4.685
5.00 -2.638 -3.183 -3.497 -3.798 -3.941 -4.107 -4.338 -4.579 -4.847 -5.148
6.00 -3.062 -3.715 -4.092 -4.A55 -4.627 -4.827 -5.106 <-5.397 -5.721 -6.086
7.00 -3.499 -4.260 -A.699 -5.123 -5.325 -5.559 -5.,886 -6.227 -6.608 -7.036
8.00 -3.945 -4.812 -5.315 -5.800 -6.031 -6.300 -6.67& -7.066 -7.502 -7.992
9.00 -4.397 -5.371 -5.936 -6.482 -6.742 -7.045 -7.468 -7.909 -B.401 -8.953

10.00 -4.852 -5.933 -6.560 -7.168 -7.A58 -7.794 -8.26% -8.755 -9.302 -9.918

Source: After Land, 1975.
This table is used in Section 13.2.
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Table A14 Confidence Limits for the Median of Any Continuous Distribution

a a
_n 0.05 0.01 _n 0.05 0.01
R '] N
5 - - - - 41 14 28 12 30
6 1 6 - - 42 15 28 13 30
7 1 7 - - 43 15 29 13 31
8 1 8 1 8 44 16 29 14 31
9 2 8 1 9 45 16 30 14 32
10 2 9 1 10 46 16 31 14 33
11 2 10 1 1 47 17 31 15 33
12 3 10 2 1 48 17 32 15 34
13 3 1 2 12 49 18 32 16 34
14 3 12 2 13 50 18 33 16 35
15 4 12 3 13 51 19 33 16 36
16 4 13 3 14 52 19 34 17 36
17 5 13 3 15 53 19 35 17 37
18 5 14 4 15 54 20 35 18 37
19 5 15 4 16 55 20 36 18 38
20 6 15 4 17 56 21 36 18 39
21 6 16 5 17 57 21 - 37 19 39
22 6 17 5 18 58 22 37 19 40
23 7 17 5 19 59 22 38 20 40
24 7 18 6 19 60 22 39 20 41
25 8 18 6 20 61 23 39 21 41
26 8 19 7 20 62 23 40 21 42
27 8 20 7 21 63 24 40 21 43
28 g 20 7 22 64 24 41 22 43
29 9 21 8 22 65 25 41 22 44
30 10 21 8 23 66 25 42 23 44
31 10 22 8 24 67 26 42 23 45
32 10 23 9 24 68 26 43 23 46
33 11 23 9 25 69 26 44 24 46
34 11 24 10 25 70 27 44 24 47
35 12 24 10 26 71 27 45 25 47
36 12 25 10 27 72 28 45 25 48
37 13 25 11 27 73 28 46 26 48
38 13 26 11 28 74 29 46 26 49
39 13 27 12 28 75 29 47 26 50
40 14 27 12 29

Source: After Geigy, 1982. )
Given are the values ! and u such that for the order statistics Xy and xy,), Problxy; < true median < x,)) = 1 ~ o
This table is first used in Section 13.4.
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Table A15 Values of A\ for Estimating the Mean and Variance of a Normal Distribution Using
a Singly Censored Data Set

!
Y .01 .02 .03 .08 .05 .06 .07 .08 0.9 .10 .15 20/ / ‘

.00 .010100 .020400 .030902 .041583 ,052507 ,063627 .074953 .086488 .09824 .11020 ,17342 ,24268 .
.05 .010551 ,021294 .032225 .043350 .054670 .066189 .077909 .089834 .10197 .11431 .17935 ,25033
.10 ,010950 ,022082 .033398 .044902 .056596 .068483 .0B0568 .092852 .10534 .11804 .18479 .25741 .
.15 .011310 ,022798 .034466 .046318 .058356 .070586 .083009 .095629 .10845 .12148 .18985 .26405 .
.20 011642 .023459 .035453 .047629 .059990 .072539 .085280 .098216 ,11135 .12469 .19460 .27031 .

.25 .011952 .024076 .036377 ,048858 .061522 .074372 .087413 ,10065 .11408 .12772 .19910 .27626 .
.30 .012243 ,024658 .037249 .050018 .062963 .076106 .089433 .10295 .11667 .13059 .20338 .28193 .
.35 .012520 ,025211 ,038077 .051120 ,064345 .077756 .091355 ,10515 .11914 .13333 .20747 .28737 ,
40 012784 ,025738 ,038866 .052173 .065660 .079332 .093193 .10725 .12150 .13595 .21139 .29260 .
45 013036 ,026243 .039624 .053182 ,066921 .080BAS .094958 .10926 .12377 .13847 .215%17 .29765 .

.50 .013279 .026728 .040352 .054153 .068135 .082301 .096657 .11121 .12595 .14090 .21882 .30253
.55 .013513 .027196 .04105% .055089 .069306 .083708 .098298 .11308 .12806 .14325 .22235 ,30725
.60 ,013739 ,027649 .021733 ,055995 .070439 .085068 .099887 .11490 .13011 .14552 .22578 ,31184 . ]
.65 .013958 .028087 .042391 .056874 .071538 .086388 .10143 .11666 .13209 .14773 .22910 .31630 . f
70 .014171  ,028513 043030 .057726 .072605 .087670 .10292 .11837 ,13402 .14987 .23234 .32065 . J

.75 104378 028927 .043652 .058556 .073643 .086917 .10438 .12004 .13590 .15196 .23550 .32489
.80 .014579 .029330 .044258 059364 .074655 .030133 .10580 .12167 ,13773 .15400 .23858 .32903 .
.85 014775 ,029723 .044BA8 .060153 .075642 .091319 .10719 .123Z5 ,13952 .15599 .24158 .33307 .
.90 .014967 .030107 045425 .060923 .076606 .092477 10854 .12480 .14126 .15793 .24452 .33703 .
.95 .015154 030483 045989 .061676 .077549 .093611 ,10987 .12632 .14297 ,15963 .24740 .34091

1.00 .015338 ,030850 .0&6540 .062413 .078471 .094720 .11116 .12780 .14465 .16170 .25022 .34471 1.

h h ,
Y .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .80 90

.00 .318B62 .4021  .AS%1 5961  .7096  .8368  .9808 1.145 1,336 1.561 2.176 3.283

05 .32793 .4130  .5066  .6101  .7252  .8540  .999% 1.166 1,358 1.585 2,203 3.31%

.10 .33662  .4233 5184 .6234 .7400 .8703 1,017 1,185 1.379 1.608 2.229 3.345
.15 34480  .A330 .5296 .6361 7542 .8860 1.035 1.206 1,400 1.630 2.255 3.376
.20 35255 4422 5403 .6483 .7678 .9012 1.051  1.222 1.419  1.651 2,280 3.a05

.25 .35993  .A510 .5506 .6600 .7810 .9158 1.067 1.260 1.439 1,672 2.305 3.435
30 .36700 4595 5604 .6713 27937 29300 1.083  1.257 1.457 1.693 2,329 3.464
.35 37379 4676 .5699 .6821 .B060 .9437 1.098  1.27% 1.676 1.713 2.353 3.492
40 38033 4755 5791 .6927 .8163 9570 1.113  1.290 1.49% 1,732 2,376 3.520
A5 38665  .4831 .5880 .7029 .8295 .9700 1.127 1,306 1,511 1.751  2.399 3.547

.50 .39276  .A904 .5967 7129 .8408 .9826 1.141  1.321 1.528  1.770 2.421 3,575
.55 39870  .A976 .6051 .7225 .8517 .9950 1.155 1.337  1.545 1.788 2.443 3,601
.60 .M0447 5045 6133 .7320 .8625 1.007 1.169 1,351 1.561 1.806 2.465 3,628
.65 .41008 .5114 .6213 L7412 .8729 1.019 1.182 1.366 1,557 1.824 2.486 3.654
.70 .41555 .5180 .6291 .7502 .8832 1.030 1.195 1.380 1.593 1.88m 2,507 3.679

.75 .&2090  ,5245 .6367 .7590 .8932 1.042 1.207 1,39 1,608 1.858 2.528 3.705
.80 .42612 5308 .6h41 .7676 29031 1.053 1.220 1,408 1.624 1.875 2.548 3.730
.85 .43122 5370 6515 L7761 9127 1.064 1.232  1.422 1.639 1.892 2.568 3.754
.90 .43622 5430 .6586 7844 .9222 1.07% 1.244 1.435 1,653 1.908 2,588 3.779
.95 .44112 5490 6656 .7925 L9314 1.085 1.255 1.448 1.668 1.924 2.607 3.803

1.00 .44592 5548 .6724 .8005 3406 1.095 1.267 1.461 1.682 1,940 2.626 3.827 1

Source: From Cohen, 1961. Used by permission.
v and h are defined in Section 14.3.2 where this table is used.
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s Generalized ESD Many-Outlier

Table A16 Approximate Critical Values N+ ¢ for Rosner’

Procedure
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Table Al6 (continued)

0.05 0.01 0.005

i+l

0.05 0.01 0.005
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Table Al16 (continued)

a a
n i+l 0.05 0.01 0.005 n i+l 0.05 0.01 0.005
60 1 3.20 3.56 3.70 200 1 3.61 3.98 4,13
2 3.19 3.55 3.69 2 3.60 3.98 4,13
3 3.19 3.55 3.69 3 3.60 3.97 4.12
4 3.18 3.54 3.68 4 3.60 3.97 4.12
5 3.17 3.53 3.67 5 3.60 3.97 4.12
10 3.14 3.49 3.63 10 3.59 3.96 4.11
70 1 3.26 3.62 3.76 250 1 3.67 4.04 4.19
2 3.25 3.62 3.76 5 3.67 4.04 4.19
3 3.25 3.61 3.75 10 3.66 4.03 4.18
4 3.24 3.60 3.75
5 3.24 3.60 3.74 300 1 3.72 4.09 4.24
10 3.21 3.57 3.71 5 3.72 4.09 4.24
10 3.71 4.09 4.23°
80 1 3.31 3.67 3.82
2 3.30 3.67 3.81 350 1 3.77 4.14 4.28
3 3.30 3.66 3.81 5 3.76 4.13 4.28
4 3.29 3.66 3.80 10 3.76 4.13 4.28
5 3.29 3.65 3.80
10 3.26 3.63 3.77 400 1 3.80 4.17 4,32
5 3.80 4.17 4.32
90 1 3.35 3.72 3.86 10 3.80 4.16 4.31
2 3.34 3.71 3.86
3 3.34 3.71 3.85 450 1 3.84 4.20 4.35
4 3.34 3.70 3.85 5 3.83 4.20 4.35
5 3.33 3.70 3.84 10 3.83 4,20 4.34
10 3.31 3.68 3.82
500 1 3.86 4.23 4.38
100 1 3.38 3.75 3.90 5 3.86 4.23 4.37
2 3.38 3.75 3.90 10 3.86 4.22 4.37
3 3.38 3.75 3.89 :
4 3.37 3.74 3.89 750 1-10  3.95 4.30 4.44
5 3.37 3.74 3.89
10 3.35 3.72 3.87 1000 1-10  4.02 4.37 4.52
150 1 3.52 3.89 4.04 2000 1-10  4.20 4.54 4.68
2 3.51 3.89 4.04
3 3.51 3.89 4.03 3000 1-10 4.29 4.63 4.77
4 3.51 3.88 4.03
5 3.51 3.88 4.03 4000 1-10  4.36 4.70 4.83
10 3.50 3.87 4.02

5000 1-10  4.41 4.75 4.88

Source: Entries for n < 500 are from Table 3 in Rosner, 1983 and are used by permission.

For n > 500, the approximate percentage points were computed as Zn —i— D/fn —-i -2+ Zf,) n — H)'"?,
where p = 1 — [(a/2)/(n — )] and Z, is the pth quantile of the N(0, 1) distribution (from Rosner, 1983).

This table is used in Section 15.3.2.
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Table A17 Factors for Computing Control Chart Lines

n; 4, d3 C4

2 1.128 0.853 0.7979
3 1.693 0.888 0.8862
4 2.059 0.880 0.9213
5 2.326 0.864 0.9400
6 2.534 0.848 0.9515
7 2.704 0.833 0.9594
8 2.847 0.820 0.9650
9 2.970 0.808 0.9693
10 2.078 0.797 —__ 0.9727
11 3.173 0.787 0.9754
12 3.258 0.778 0.9776
13 3.336 0.770 0.9794
14 3.407 0.763 0.9810
15 3.472 0.756 0.9823
16 3.532 0.750 0.9835
17 3.588 0.744 0.9845
18 3.640 0.739 0. 9854
19 3.689 0.734 0.9862
20 3.735 0.729 0.9869
21 3.778 0.724 0.9876
22 3.819 0.720 0.9882
23 3.858 0.716 0.9887
24 3.895 0.712 0.9892
25 3.931 0.708 0.9896

Source: From Burr, 1976. Used by permission.
n; = number of data in the subgroup..

¢4 approaches 1 as n; becomes large.

This table is used in Section 15.6.3.
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Table A18 Probabilities for the Mann-Kendall Nonparametric Test for Trend
Values of n i Values of n
s| a 5 8 9 s| 6 7 10
0|0.625 0.592 0.548  0.540 1 10.500 0.500 0.500
2 10.375 0.408 0.452  0.460 3 [0.30 0.386 0.431
a|0.167 0.242 0.360 0.381 5 |0.235 0.281 0.364
6 | 0.042 0.117 0.274  0.306 7 | 0.136  0.191  0.300
8 0.042  0.199  0.238 9 | 0.068 0.119 0.242
10 0.0%3 0.138 0.179 11 | 0.028 0.068  0.190
12 0.089  0.130 13 | 0.0%83 0.035  0.146
14 0.054  0.090 15 | 0.0%14 0.015  0.108
16 0.031  0.060 17 0.0%54 0.078
18 0.016  0.038 19 0.0%14  0.054
20 0.0°71  0.022 21 0.0%20 0.036
22 0.0%28 0.012 23 0.023
24 0.0%7 0.0%3 25 0.014
26 0.0%19  0.0%9 27 0.0%3
28 0.0%s5 0.0%12 29 0.0%46
30 0.0%3 31 0.0%23
32 0.0°12 33 0.0%11
34 0.0%2s5 35 0.0%7
36 0.0°28 37 0.0°18
39 0.0%s8
a1 0.0%15
43 0.0%28
as | 0.0%28
Source: From Kendall, 1975. Used by permission.
Repeated zeros are indicated by powers; for example, 0.0°47 stands for 0.00047.
Each table entry is the probability that the Mann-Kendall statistic S equals or exceeds the specified
value of S when no trend is present.
This table is used in Section 16.4.1.
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Degrees
of Probability of obtaining a value of x2 smaller than the tabled value
Freedom
v 0.005 0,001 0.025 0.050 0.100 0.250 0.50 0.750 0.900 0.95¢ 0.975 0.990 0.995 0.999
1 eee  eree  esse  aeee 0,02 0.10 0.45 1.32 2.n 3.84 5.02 6.63 7.88 10.83
2 0.01 0.02 0.05 0,10 0.21 0,58 1.39 2.77 4.61 5.99 7.38 9.21  10.60 13.82
3 0.07 0.11 0.22 0.35 0,58 1.21 2.37 A 11 6.25 7.81 9.35 11.3% 12,88 16,27
& 0.21 0.30 .0.48 0.71 1.06 1.92 3.36 5.39 7.78 9.49 11,14 13.28 14.86 1B.47
5 0.41 0.55 0.83 1.15 1,61 2.67 .35 6.63 9,24 11,07 12,83 15.09 16.75 20.52
6 0.68 0.87 1.2& 1.64 2.20 3.45 5.35 7.864 10.64 12.59 14.45 16.81 18,55 22.46
7 0.99 1.24 1.69 2,17 2.83 4.25 6.35 9.04 12.02 14.07 16,01 18.48 20,28 24.32
8 1.3%  1.65 2.18 2,73 3.9 5.07 7.3% 10.22 13.36 15.51 17,53 20,09 21.96 26.12
9 1.73 2.09 2.70 3.33 4,17 5.90 8.3% 11.39 14,68 16.92 19.02 21.67 23.59 27.88
10 2.16 2.56 3.25 3.9 &4.87 6.7% 9.3% 12,55 15,99 18.31 20.48 23.21 25.19 29.59
1" 2.60 3.05 3.82 &4.57 5.58 7.58 10.3% 13,70 17,28 19.68 21.92 24.72 26.76 31.26
12 3.07 3.57 4.40 5.23 6.30 8.4 11,34 14,85 18,55 21.03 23.3% 26.22 28.30 32.91
13 3.57 4.11 5.01 5.89 7.0 9.30 12.3%4 15,98 19.81 22.36 24,74 27.69 29.82 3A.53
14 4.07 4.66 5.63 6.57 7.79 10.17 13.3% 17,12 21.06—23.68 26.12 29.14 31.32 36.12
15 .60 5.23 6.27 7.26 8.55 11.08 14,34 18,25 22.31 25.00 27.49 30.58 32.80 37.70
16 5.14 5.81 6.91 7.96 9.31 11.91 15.34 19.37 23.54 26.30 28.85 32,00 34.27 39.2%
17 5.70 6.1 7.56 B8.67 10.09 12.79 16.34 20.A9 24.77 27.59 30.19 33.41 35.72 40.79
18 6.26 7.01 6.23 9.39 10.86 13.68 17.3%4 21.60 25.99 28.87 31.53 34.8) 37.16  42.31
19 6.8¢ 7.63 8,91 10.12 11.65 14.56 18.34 22.72 27.20 30.14 32.85 36.19 38,58 43.82
20 7.43 B8.26 9.59 10.85 12.4% 15.85 19.3% 23,83 28.41 31.A41 34,17 37.57 40.00 45,32
21 8.03 8.90 10.28 11.59 13.24 16.34 20.3% 24,93 29.62 32.67 35.48 38.93 41,40 46.80
22 8.64 9.54 10.98 12.3& 14.08 17.2% 21.3% 26.04 30.81 33,92 36.78 50.22 42,80 48.27
23 9.26 10.20 11.69 13.09 14.85 18.14 22,3% 27.14 32.01 35,17 38.08 41, 44,18  49.73
24 9.89 10.86 12.40 13.85 15.66 19.08 23.3% 28.24 33.20 36.42 39,36 42.98 45.56 51.18
25 10.52 11.52 13.12 14,61 16.47 19.9% 26.34 29,34 34.38 37.65 40.65 4h.31 46.93 52.62
26 11.16 12.20 13.8% 15,38 17.29 20.84 25.34 30.43 35.56 38.89 41,92 45.64 48.29 54.05
27 11.81 12.88 1A4.57 16.15 18.11 21.75 26.3% 31.53 36.74 #0.11 43,19 #6.96 49.64 55.48
28 12.46 13.56 15.31 16.93 18.94 22.66 27.34 32.62 37.92 41.34 a4k.h6 48.28 50.99 56.89
29 13.12 14.26 16.05 17.71 19.77 23.57 28.3% 33.71 39.09 42.56 45.72 49.59 52.34 56.30
30 13.79 14.95 16.79 18.49 20.60 24.M8 29.3% 34.80 40.26 43,77 46,98 50.89 53.67 59.70
&0 20.71 22.16 24.43 26.51 29.05 33.66 39.34 45.62 51.80 55.76 59.34 63.69 66.77 73.40
S0 27.99 29.71 32.36 34.76 37.69 42.9 49.33 56.33 63.17 67.50 71.hA2 76.15 79.49 86.66
60 35.53 37.48 40.48 43,19 46.46 52.29 59.33 66.98 74.40 79.08 83.30 88,38 91.95 99.61
70 43.28 &5.4h4 A8.76 51.7& 55.33 61.70 69.33 77.58 85,53 90.53 95.02 100.42 104.22 112,32
80 ©1.17 53.54 57.15 60.39 64,28 71.14 79.33 88.13 96.58 101.88 106.63 112.33 116.32 124,84
90 59.20 61.75 65.65 69.13 73.29 80.62 89.33 98.6&4 107.56 113.14 118,14 124.12 128.30 137.21
100 €7.33 70.06 74.22 77.93 82.36 90.13 99.33 109.14 118.50 124.34 129.56 135.81 140.17 149.45
X -2.576 -2.326 -1.96 -1.645 -1.282 -0.674 0.0 0.676 1,282 1.645 1.96 2.326 2.576 3.090

Source: After Pearson and Hartley, 1966.

For v > 100, take x2

X is given in the last row of the table.
This table is first used in Section 16.4.4.

V[l — 219 + X 2/9v]P or x* = 172 [X + J2v — 17 if less accuracy is needed, where

e —ha




Appendix TREND
B

TESTING FOR MONOTONIC TRENDS USING
MANN-KENDALL, SEASONAL KENDALL, AND
RELATED NONPARAMETRIC TECHNIQUES

IMPLEMENTATION

Written in FORTRAN 77. _
The 1/0 units that may need to be changed are:

IN =5 ! Input from the terminal
I0UT 6 ! Output to the terminal
IFIN =1 ! Input data from a file

IFOUT =3 ! Output results to a file

There are a few requirements if a driver program is substituted for the
provided driver (TREND).

1. Parameters in the parameter statement must be large enough to fit the data.
The parameters are
a. NYRS =15 ! Number of possible years
b. NSEAS = 12 Number of possible seasons
c. NSIT =10 Number of possible stations
(sites)
Number of possible data points
NTOT = NYRS * NSEAS

!
!
!
d. NTOT = 180 !
!
16110 ! Number of possible differences for
!
!
[
!

e. NTTOT =

the Mann-Kendall slopes

NTTOT = NTOT * (NTOT — 1)/2
f. NYS = 2500 Number of possible differences for

the seasonal Kendall slopes
2. The common blocks and parameter statement must be present as listed in
the driver program. These same common blocks and parameters are used in
the subroutines. Thus, if either a common block or a parameter is changed
in the driver program, it must be changed in the subsequent routines.

Note: Appendix B was written by D. W. Engel, technical specialist, Pacific Northwest Laboratory.
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DESCRIPTION OF ROUTINES
Driver routine
1. Establishes parameters and common blocks
2. Inputs the following data parameters

NYEAR ~ Number of years of data

NSEASON Number of seasons of data

NSITE Number of sites or stations of data

ALPHA Acceptance level of significance of the homogeneity statistics
3. Inputs data into the following arrays

YEAR Years

SEASON Seasons

DATA /Observed values

4. Calls the subroutines to calculate the different trend statistics after inputting
one data set (station) at a time. These statistics are stored for output and for
calculating statistics between stations (sites).

5. Output results in the form of a table.

Major Subroutines

1. THOMO Calculates and stores the homogeneity statistics

2. SENT Calculates the Sen T statistic

3. KTEST Calculates the seasonal Kendall statistic or the Mann-Kendall
statistic. Also calculates the Sen and seasonal Kendall slopes.
Confidence intervals are also calculated by calling the subroutine
CONINT

COMMENTS

All of the statistics (homogeneity, Sen T, Kendall) are calculated with each run
of the program. The Mann-Kendall statistic is calculated if the number of
seasons that is input (NSEASON) is zero; otherwise the seasonal Kendall statistic
is calculated.

All of the homogeneity statistics are calculated in the calls to the subroutine
THOMO. On output, if the homogeneity statistics are significant (i.e., P <
ALPHA), then some of the related statistics are not printed.

Data does not have to be sorted on input. The driver program sorts the data
by seasons. The Sen T statistic cannot be calculated if there are missing years,
seasons, or stations (sites). The program calculates the homogeneity and Kendall
statistics, but only outputs a message for the Sen T statistic if there are missing
data (years, seasons, stations). Replicate data values are averaged when calculating
the Sen T statistic. Data is input from one data file for each station (site).

When running the Mann-Kendall test (NSEASON = 0), only time and data
values are needed. But to keep the program TREND general enough to run all
of the tests, a year, season, and data value must be input. This may be
accomplished by reading the time variable twice, using a T (tab) format.

The current version of TREND calculates a confidence interval about the
estimated slope by using four different alpha (significance) levels. Different

RS e
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alpha levels may be added, or those presently in TREND may be deleted by
changing two statements in the subroutine CONINT. Simply add or delete the
alpha level (ALP) and its corresponding Z value (ZA) in the data statement.

If the number of alpha levels (NCI) is changed, the line setting the number
must also be changed. At present, the line reads NCI = 4.

Input file names and data format are input to the driver program (TREND).
The results for each run are written to the disk file TREND.OUT.

If the investigator wants to treat ND, trace, or LT values as missing
observations, then no data are entered into the program for those cases. If they
will be treated as one half the detection limit or some other values, those values
should be entered as part of the data set.

PROGRAM TREND

THIS IS THE DRIVING PROGRAM FOR THE SUBROUTINES THAT
CALCULATE THE FOUR STATISTICS TESTING FOR TREND. THE
SUBROUTINES ARE,

THOMO .... CALCULATES THE CHI-SQUARED STATISTICS FOR THE
HOMOGENEITY TESTS.

SEN ...... CALCULATES THE ALIGNED RANK (SEN) STATISTIC.

KTEST .... CALCULATES THE SEASONAL KENDALL STATISTIC, OR

CALCULATES THE MANN KENDALL STATISTIC IF THE NUMBER
OF SEASONS = 0.

INPUT PARAMETERS:
NYEAR .... NUMBER OF YEARS.
NSEASON .. NUMBER OF SEASONS.
NSITE .... NUMBER OF SITES (STATIONS).
ALPHA .... ACCEPTANCE LEVEL FOR THE STATISTICS.

INPUT DATA ARRAYS:

YEAR ..... ARRAY OF YEARS.
SEASON ... ARRAY OF SEASONS.
DATA ..... ARRAY OF DATA.

NSEASON = 0 --> CALCULATE THE MANN KENDALL STATISTIC. NO
SEASON AFFECT.

nnnnnnnnnnnnnnnnnnnnnnnnnn

PARAMETER NYRS = 30, NSEAS = 12, NTOT = 180, NSIT = 10,
1 NTTOT = 16110, NYS = 2500, NA = 10, NE = 2
c
COMMON /DATA/ NYEAR, YEAR(NTOT),
1 NSEASON, SEASON(NTOT),
2 NDATA(NSIT),  DATA(NTOT)

COMMON /SORT/ SORTY(NTOT), SORTS(NTOT), SORTD(NTOT), NCR{NTOT)
COMMON /SLOPE/ ZSLOPE(NSEAS,NSIT), SEASSL(NSEAS), SITESL(NSIT),

1 YSSLOPE(NYS,NSEAS), NYSSLOPE(NSEAS)
COMMON /ZST/  ZSTAT(NSEAS,NSIT), NSTAT(NSEAS,NSIT),
1 SSTAT(NSEAS,NSIT)

COMMON /HOMO/ TOTAL, NTOTAL, PTOTAL,
1 HOMOGEN, NHOMOGEN , PHOMOGEN,

2 SEASONAL, NSEASONAL , PSEASONAL ,

3 SITE, NSITES, PSITES,

4 SITESEAS, NSITESEAS, PSITESEAS,

5 TRENDS, NTRENDS, PTRENDS,

6 ZSEASON(NSEAS), PSEASON(NSEAS),

7 ISITE(NSIT), PSITE(NSIT)

COMMON /CI1/ ALP(NA), ZA(NA)

COMMON /C12/ CIMKS(NA,NE,NSEAS,NSIT), CISIS(NA,NE,NSIT),

1 VSEA(NSEAS), NUME, CISES(NA,NE,NSEAS)

COMMON /WR1/ SENT(NSIT), PSENT(NSIT), ZKEN(NSIT), PKENZ(NSIT)
COMMON /WR2/ NC(NTOT), NCRS(NTOT,NSIT), NCRC(NSIT)




(e X el

OO0 [p Xl

110

120

130

140

OO

TREND 277

REAL RANKS(NTOT)

BYTE INFILE(80), OUTFILE(80), FMT(80), IFPRT
LOGICAL LAST

DATA LAST / .FALSE. /

SETTING I/0 UNITS

IN =5 ! INPUT FROM TERMINAL
I0UT =6 ! OUTPUT TO "TERMINAL
IFIN =1 ! INPUT FORM FILE
IFOUT = 3 ! OUTPUT TO FILE

OUTPUT TO FILE TREND.OUT
OPEN(UNIT=IFOUT ,NAME='TREND.OUT' ,TYPE="NEW')

INPUT INFORMATION

WRITE(IOUT,110)

FORMAT(' ENTER MAX NUMBER OF YEARS, SEASONS, AND STATIONS.',

1 ' NUMBER SEASON = 0 --> CALCULATE MANN KENDALL STATISTIC')
READ(IN,*} NYEAR, NSEASON, NSITE

NRITE(IOUT,*)/{,ENTER ALPHA (ACCEPTANCE) LEVEL'
READ(IN,*) ALPHA

WRITE(IOUT,*) ' DO YOU WANT DATA PRINTED ON OUTPUT? Y or N'
READ(IN,120) IFPRT
FORMAT (A1)

HEADER FOR OUTPUT FILE
IF (NSEASON.EQ.0) THEN
WRITE(IFOUT,130) NYEAR, NSITE, ALPHA

FORMAT(' NUMBER OF ITMES =',14/

1 ' NUMBER OF STATIONS =',14/

2 ' ALPHA LEVEL =',F6.3)

ELSE
WRITE(IFOUT,140) NYEAR, NSEASON, NSITE, ALPHA
FORMAT(' NUMBER OF YEARS =',14/

1 ' NUMBER OF SEASONS =',14/

2 ' NUMBER OF STATIONS =',14/

3 ' ALPHA LEVEL =',F6.3)

ENDIF

MAIN LOOP FOR DIFFERENT SITES (STATIONS)
DO 300 J=1,NSITE

INPUT DATA FILE SPECS

WRITE(IOUT,*) * ENTER NAME OF INPUT DATA FILE'
READ(IN,150) KCI, (INFILE(I),I=1,KCI)
FORMAT(Q,80A1)

INFILE(KCI+1)=0.0
OPEN{UNIT=IFIN,NAME=INFILE,TYPE="0LD' ,READONLY)

WRITE(IOUT,*) * ENTER INPUT FILE FORMAT; YEAR, SEASON,*,
1 ' DATA. Ex. (3F10.0})'

READ(IN,150) KC, (FMT(1),I=1,KC)

FMT(KC+1)=0.0

INITIALIZE DATA TO 0.0
DO 160 I=1,NTOT

YEAR(I) = 0.0
SEASON(I) = 0.0
DATA(I) "= 0.0
CONTINUE

READ DATA, FIND MINIMUM YEAR, AND SET UP FOR MANN TEST
ND =0
YM = 2000.0
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DO 170 I=1,2000

READ(IFIN,FMT,END=180) YR, SSN, DATA(I)
ND = ND + 1

IF (YR.LT.YM .AND. YR.NE.0.0) YM = YR
YEAR(I) = YR

IF(NSEASON.EQ.0) THEN
NC(I) = 0
RANKS(1)
SEASON(1)

SEASON(I)
ENDIF
CONTINUE
IF (NSEASON.EQ.0) NC(1) = ND

I
1

SSN

HEADER FOR OUTPUT FILE

IF (J.GT.1) WRITE(IFOUT,190)

FORMAT(1H1)

WRITE(IFOUT,200)

FORMAT(//' STATION NUMBER DATA POINTS INPUT FILE NAME'/)

WRITE(IFOUT,210) J, ND, (INFILE(I),I=1,KCI)
FORMAT(X,14,T12,16,733,80A1)

NDATA(J) = ND

CLOSE(UNIT=IFIN)

OUTPUT DATA IF DESIRED
IF (IFPRT.EQ.'Y' .OR. IFPRT.EQ.'y') THEN
IF (NSEASON.EQ.O0) THEN
WRITE(IFOUT,220) J
FORMAT(//" TIME STATION *,12)
DO 240 I=1,ND
IYEAR = YEAR(I)
ISEAS = SEASON(I)
WRITE(IFOUT,230) IYEAR, DATA(I)
FORMAT(5X,18,2X,F10.2)
CONTINUE
ELSE
WRITE(IFOUT,250) J
FORMAT(//* YEAR  SEASON  STATION ',12)
D0 270 1=1,ND
IYEAR = YEAR(I)
ISEAS = SEASON(I) .
WRITE(IFOUT,260) IYEAR, ISEAS, DATA(I)
FORMAT(15,18,2X,F10.2)
CONTINUE
ENDIF
ENDIF

SORT DATA BY SEASONS AND SCALE YEAR FROM 1 TO NYEAR
IF (NSEASON.NE.O) CALL RANK(SEASON,RANKS,ND,NC)

+

IF (NCI.NE.O)

INCR = IN

NCR(INCR)

NCRS(INCR,J)

IF (NCI.LT.2
ENDIF

YEAR(I) = YEAR(I

CONTINUE

I
E
+1
NCI

= NCI
) STOP ' NOT ENOUGH DATA IN SEASON'
) - YM+ 1

DO 290 I=1,ND
RS = RANKS(I)
NR = NC(RS)
RI = RS - (

NR - 1.0)/2.0
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NC(RS) =NR - 2
IF (NSEASON.EQ.0) RI = I
SORTY(RI) = YEAR(I)
SORTS(RI) = SEASON(I)
SORTD(RI) = DATA(I)

290 CONTINUE
IF (NSEASON.EQ.0) NCR(1) = ND

TESTING FOR HOMOGENEITY OF TREND. IF THIS IS THE
LAST CALL TO THOMO, THEN CALCULATE ALL STATISTICS.
IF (J.EQ.NSITE) LAST = .TRUE.

CALL THOMO(J,LAST)

OO

CALCULATING THE SEN T STATISTIC IF THERE IS MORE
THAN 1 SEASONS

IF (NSEASON.GT.0) THEN

CALL SEN(T,ND)

CALL PNORM(T,PT)

SENT(J) =T

IF (T.GT.0.0) THEN

PSENT(J) = 2*(1.0 - PT)

OO

ELSE

PSENT(J) = 2*PT
ENDIF
ENDIF

CALCULATING THE SEASONAL KENDALL (NUMBER SEASONS > 0) OR
THE MANN KENQALL (NUMBER SEASONS = 0) STATISTIC.
CALL -KTEST(Z,J,LAST)

CALL PNORM(Z,PZ)

ZKEN{J) =1

IF (Z.GT.0.0) THEN

PKENZ(J) = 2*(1.0 - PZ)

ELSE

PKENZ(J) = 2*Pz

ENDIF

NCRC(J) = NCRT
300 CONTINUE

OO0

¢
C OUTPUT THE RESULTS OF THE TREND TESTS
C
CALL WRITE1(IFOUT,NSITE,ALPHA)
c
CLOSE(UNIT=IFOUT)
STOP
END

Fhkhhkkkkkhkdhkhdhhhhhkkkhhkhhhkhkkhrhhdhdhkhkhkhkkdhhkikidkhkkikk

SUBROUTINE THOMO(1J,LAST)

ddkkdkdkkkkhkdkdhkdkkhhbhkkhkdhkhttikdhrhhkdhhktirhkkhkihkhkkhkhhhkhhik

THIS SUBROUTINE CALCULATES THE CHI-SQUARE STATISTICS Z**2
FROM THE KENDALL S STATISTIC.

Z =S / SQRT(VAR(S))

SUM[Sj]
SUM[VAR(Sj)]
Sj = SUM(SUM({SIGN{Xj - Xk)))
k=1 to N-1, j= k+1 to N, and N = NUMBER
OF YEARS

VAR(Sj} = [N(N-1)(2N+5) - TIE]/18 + CORRECT

TIE = SUM(t(t-1)(2t+5))

t = NUMBER INVOLVED IN TIE.

CORRECT IS A CORRECTION FACTOR FOR REPLICATE DATA.

S
VAR(S)

10 ..... SITE (STATION) INDEX.
LAST ... LOGICAL VARIABLE. IF LAST = .TRUE. --> THIS IS LAST

OOOOOOOOOOOOOOOCOO0O0O (o]
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c
c

OO0

[ ¥ e o

[ N

120

O

SOOO

220

SITE, SO CALCULATE THE FINAL STATISTICS.

PARAMETER NYRS = 30, NSEAS = 12, NTOT = 180, NSIT = 10,
1 NTTOT = 16110

COMMON /DATA/ NYEAR, YEAR(NTOT),

1 NSEASON, SEASON(NTOT),

2 NDATA(NSIT), DATA(NTOT)

COMMON /SORT/ SORTY(NTOT), SORTS(NTOT), SORTD(NTOT), NCR(NTOT)
COMMON /HOMO/ TOTAL, NTOTAL, PTOTAL,
1 HOMOGEN, NHOMOGEN, PHOMOGEN,

2 SEASONAL , NSEASONAL , PSEASONAL ,

3 SITE, NSITES, PSITES,

4 SITESEAS, NSITESEAS, PSITESEAS,

5 TRENDS, NTRENDS, PTRENDS,

6 ZSEASON(NSEAS), PSEASON(NSEAS),

7 ISITE(NSIT), PSITE(NSIT)

REAL SLOPES(NTTOT)
INTEGER NSTAT(NSEAS ,NSIT)
LOGICAL LAST

DATA TOTAL, TOT2, ZSEASON / 0.0, 0.0, NSEAS*0.0 /
NSITE = 1y

LOOP FOR EACH SEASON. DEFINE N = NUMBER SEASONS, BUT IF N =
{ie MANN KENDALL TESTS) THEN SET N = 1 FOR THE CALCULATIONS.

N = NSEASON
IF (N.EQ.0) N = 1
1S =1

ZSITES = 0.0
D0 120 1=1,N
NC = NCR(I)

CALCULATE THE KENDALL STATISTIC Sj
CALL KEND(SORTD(IS),SORTY(IS),SJ,NC,SLOPES,SMED,NS)

CALCULATE THE VARIANCE OF Sj
CALL TIES(SORTD(IS),SORTY(IS),NC,VAR)
IS = 1S+ NC

CALCULATE THE z-STATISTIC.
ISTATS = 0.0
IF(VAR.EQ.0.0) GOTO 120

SJV = SJ/SQRT(VAR)
TOTAL = TOTAL + SJv*sgy
ZSITES = ZSITES + SJv
ZSEASON(I) = ZSEASON(I) + SJv
CONTINUE
ZSITE(1J) = ZSITES

IF NOT LAST CALL {je. I1J .NE. NSITE) THEN RETURN
IF (.NOT.LAST) RETURN

IF LAST CALL THEN CALCULATE THE FINAL CHI-SQUARE STATISTICS

CALCULATE Z-STAT OVER THE DIFFERENT SITES, SEASONS MEANS
DD = 0.0
DO 220 1=1,NSITE

ISITES = ZSITE(I) / N

ZSITE(I) = ZSITES

20D = 7DD + ZSITES

CONTINUE

ZDDS = 0.0

DO 230 I=1,N
ZSEASONS = ZSEASON(I) / NSITE
ZSEASON(I) = ZSEASONS

ZDDS = ZDDS + ZSEASONS
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CONTINUE

ZDD = ZDD / NSITE
ZDDS = ZDDS / N

CALCULATING CHI-SQUARE STATISTICS

NTOTAL = N*NSITE
CALL CHICDF(TOTAL,NTOTAL, PTOTAL)

TRENDS = NSITE*N*ZDD*7DD
NTRENDS = 1
CALL CHICDF(TRENDS,NTRENDS,PTRENDS)

HOMOGEN TOTAL - TRENDS
NHOMOGEN = NTOTAL - 1
CALL CHICDF(HOMOGEN;NHOMOGEN,PHOMOGEN)

SEASONAL = 0.0
DO 320 I=1,N
SUM = ZSEASON(1) - zDD
SEASONAL = SEASONAL + SUM*SUM
CONTINUE
SEASONAL = NSITE*SEASONAL
NSEASONAL = N - 1
CALL CHICDF(SEASONAL,NSEASONAL,PSEASONAL)

SITE = 0.0
DO 330 I=1,NSITE
SUM = ZSITE(I) - zpD
SITE = SITE + SUM*SUM
CONTINUE
SITE = N*SITE
NSITES = NSITE - 1
CALL CHICDF(SITE,NSITES,PSITES)

SITESEAS = HOMOGEN -~ SEASONAL - SITE
NSITESEAS = NSITES*NSEASONAL

IF (SITESEAS.LT.0.0) SITESEAS = 0.0

CALL CHICDF(SITESEAS,NSITESEAS,PSITESEAS)

CALCULATE CHI-SQUARE FOR INDIVIDUAL SEASONS AND SITES
DO 340 1=1,N

IS = ZSEASON(1)

IS = NSITE*ZS*ZS

CALL CHICDF(ZS,1,PSEASON(1))

ZSEASON(I) = zS
CONTINUE

DO 350 I=1,NSITE
25 = ZSITE(I)
IS = N*7S*7S
CALL CHICDF(ZS,1,PSITE(1))
ISITE(I) = 75
CONTINUE

RETURN
END

THIS ROUTINE CALCULATES AND RETURNS THE SEN T STATISTIC
FOR TESTING OF TRENDS. THIS ROUTINE AVERAGES REPLICATE
DATA.

FOR LARGE ENOUGH M (SEASONS) T IS DISTRIBUTED N(0,1).
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120

150

160
170

T-= SQRT[IZM*M/(N(N+1)SUM(SUM(Rij-R.j)))]*
SUML(i-(N+1)/2)(Ri.~(NM+1)/2)]

R = RANKED DATA WITH SEASON EFFECT REMOVED. (Xij - x.j)
= NUMBER SEASON, N = NUMBER YEARS, i = ] to N, j=1¢toM

PARAMETER NYRS = 30, NSEAS = 12, NTOT = 180, NSIT = 10

COMMON /DATA/ NYEAR, YEAR(NTOT),
1 NSEASON, SEASON(NTOT),
2 NDATA(NSIT),  DATA(NTOT)

REAL RIDOT(NYRS), RDOTJ(NSEAS), RIJ(NYRS ,NSEAS)
REAL XDATAéNTOT), RDATA(NTOT)

INTEGER NC(NTOT), ICOUNT(NYRS,NSEAS)

DOUBLE PRECISION SUMI, SUMJ

MISSING DATA IF ICOUNT(I,J) = 0
DO 110 J=1,NSEAS
DO 110 I=1,NYRS

RIJ(1,d) = 0.0
ICOUNT(I,J) = 0
CONTINUE

PUT DATA INTO  YEAR x SEASON MATRIX AND
AVERAGE REPLICATE DATA
D0 120 I=1,ND

1IND = YEAR(I)

JIND = SEASON(I)

RIJ(TIND,JIND) = RIJ(IIND,JIND) + DATA(I)
ICOUNT(IIND,JIND) = ICOUNT(TIND,JIND) + 1
CONTINUE

DO 130 J=1,NSEASON
DO 130 I=1,NYEAR
ICOUN = ICOUNT(I,d)
IF (ICOUN.GT.1) THEN
RIJ(I,d) = RIJ(I,J)/ICOUN
ELSE
IF (ICOUN.EQ.0) GOTO 260
ENDIF

CONTINUE —

REMOVE SEASONAL EFFECT BY SUBTRACTING THE SEASON
AVERAGES FROM THE DATA MATRIX RIJ.
DO 140 I=1,NYEAR
RIDOT(I) = 0.0
CONTINUE

K=1
DO 170 J=1,NSEASON
RDOTJS = 0.0
DO 150 I=1,NYEAR
X = R1J(1,J)
RDOTJS = RDOTJS + X
CONTINUE
RDOTJS = RDOTJS/NYEAR ﬁ

DO 160 I=1,NYEAR
RIJIJ = RIJ(I,d) - RDOTJS
RIJ(I,J) = RIJIJ
XDATA(K) = RIJIJ
K=K+ 1

CONTINUE

CONTINUE

RANK DIFFERENCES ALL TOGETHER
CALL RANK(XDATA,RDATA,ND,NC)

PUT RANKS BACK INTO  YEAR x SEASON MATRIX
IND = 1

DO 180 J=1,NSEASON

DO 180 I=1,NYEAR

RIJ(I,d) = RDATA(IND)
IND = IND + 1
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CONTINUE

CALCULATE YEAR AND SEASON AVERAGES FOR THE RANKED MATRIX RIJ.
DO 190 I=1,NYEAR
RIDOT(I) = 0.0

CONTINUE |
DO 210 J=1,NSEASON }
RDOTJS = 0.0 j
DO 200 I=1,NYEAR !
X = RIJ(I,J) |
RDOTIS = RDOTIS  + X
RIDOT(I) = RIDOT(I) + X
CONTINUE |
RDOTJ(J) = RDOTJS/NYEAR |
CONTINUE

DO 220 I=1,NYEAR
RIDOT(I) = RIDOT(I)/NSEASON
CONTINUE

CALCULATE SEN STATISTIC
SUMI = 0.0
SUMJ = 0.0
YADD] = (NYEAR + 1)/2.0
YADD2 = (NYEAR*NSEASON + 1)/2.0
DO 240 J=1,NSEASON
RDOTJS = RDOTJ(J)
DO 230 I=1,NYEAR
SUMJ = SUMJ + (RIJ(1,d) - RDOTJS )*+*2
CONTINUE
CONTINUE

DG 250 I=1,NYEAR
SUMI = SUMI + (I - YADD1)*(RIDOT(I) - YADD2)
CONTINUE

IF (SUMJ.EQ.0.,0 .OR. SUMI.EQ.0.0) GOTO 260
T-= SQRT(12*NSEASON*NSEASON/(NYEAR*(NYEAR+1)*SUMJ))*SUMI
GOTO 270

MISSING DATA IN DATA SET, CAN NOT COMPUTE SEN T STATISTIC
T=0.

RETURN
END

SUBROUTINE KTEST(Z,J,LAST)

xxxxxxxxxxxxxxxxxxxxxxx falalalalak bt b b Rk Rk 3 x £ 2 2 2T 22 LR R

THIS ROUTINE CALCULATES THE Z (STANDARD NORMAL ) STATISTIC
FOR THE SEASONAL KENDALL TEST OF TREND. IF NSEASON = 0
CALCULATES THE MANN KENDALL STATISTIC. ALSO CALCULATES THE
KENDALL SLOPES AND CONFIDENCE INTERVALS ABOUT THE SLOPE.

l . RETURN KENDALL STATISTIC.
J .... NUMBER OF SITE (STATION) FOR THIS CALL.
Z = (S - 1)/SQRT(VAR(S)) IF S > ¢
Z=0 IF S=0
Z = (S + 1)/SQRT{VAR(S)) IF S <0

S = SUM[Sj]

VAR(S) = SUM[VAR(Sj)]

SJ = SUM(SUM(SIGN(Xj - Xk)))
k=1 to N-1, j= k+1 to N, and N = NUMBER
OF YEARS

VAR(Sj) = [N(N-1)(2N+5) - TIE]/18 + CORRECT
TIE = SUM(t(t-1)(2t+5))
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t = NUMBER INVOLVED IN TIE.
CORRECT IS THE CORRECTION FACTOR FOR REPLICATE DATA

SLOPE = MEDIAN(Xj - Xk)/(j-k); J=1toN-1by1land k= J+1 to N by 1.

PARAMETER NYRS = 30, NSEAS = 12, NTOT = 180, NSIT = j0,

1 NTTOT = 16110, NYS = 2500, NA = 10, NE = 2
COMMON /DATA/ NYEAR, YEAR(NTOT),

1 NSEASON, SEASON(NTOT),

2 NDATA(NSIT),  DATA(NTOT)

COMMON /SORT/ SORTY(NTOT), SORTS(NTOT), SORTD(NTOT), NCR{NTOT)
COMMON /ZST/ ZSTAT(NSEAS,NSIT), NSTAT(NSEAS,NSIT),

1 SSTAT(NSEAS,NSIT)

COMMON /SLOPE/ ZSLOPE(NSEAS ,NSIT), SEASSL(NSEAS), SITESL(NSIT),
1 YSSLOPE(NYS,NSEAS), NYSSLOPE(NSEAS)

COMMON /CI1/ ALP(NA), ZA(NA)

COMMON /CI2/ CIMKS(NA,NE,NSEAS,NSIT), CISIS(NA,NE,NSIT),

1 VSEA(NSEAS), NUME, CISES(NA,NE ,NSEAS)

REAL SLOPES(NTTOT)
LOGICAL LAST

LOOP FOR EACH SEASON. DEFINE

N = NUMBER SEASONS, BUT IF N = 0
{ie MANN KENDALL TESTS) THEN SET N =

1 FOR THE CALCULATIONS.

N = NSEASON
IF (N.EQ.0) N =1
IS =

v

&

=
(=2 L I

CALCULATE THE KENDALL STATISTIC Sj

CALL KEND(SORTD(IS),SORTY(IS),SJ,NC,SLOPES(IN),SMED,NS)
SSUM = SSUM + SJ

ZSLOPE(I,d) = SMED

SAVE SLOPE VALUES —
IVS = NYSSLOPE(I) + 1

NSS = NSS + NS

IN1 = IN

IN2 = IN + NS - 1

DO 100 K=IN1,IN2
YSSLOPE(IYS,I) = SLOPES(K)
IYS = IYS + 1

CONTINUE

NYSSLOPE{I) = IYS - 1

CALCULATE THE VARIANCE OF Sj

CALL TIES(SORTD(IS),SORTY(IS),NC,VAR)
1S = IS + NC

IN = IN + NS

VSUM = VSUM + VAR

VSEA(I) = VSEA(I) + VAR

CALCULATE CONFIDENCE INTERVALS ABOUT THE SLOPE
CALL CONINT(NS,VAR,SLOPES(INI),CIMKS(I,I,I,J),
1 NUME,CIMKS(1,2,1,J))

STORE ALL Z'S USING THE CONTINUITY CORRECTION
IF (VAR.EQ.0.0) GOTO 110

IF (SJ.GT.0.0) THEN

ZSTAT(1,d) = (SJ - 1)/SQRT(VAR)
ELSE

IF (SJ.LT.0.0) ZSTAT(1,J) = (SJ + 1)/SQRT(VAR)
ENDIF
NSTAT(1,Jd) = NC
SSTAT(1,d) = SJ
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CONTINUE

-STATISTIC USING THE CONTINUITY CORRECTION
= 0.0
F (VSUM.EQ.0.0) GOTO 120
F (SSUM.GT.0.0) THEN
Z = (SSUM - 1)/SQRT(VSUM)

z
z
I
I

SE
IF (SSUM.LT.0.0) Z = (SSUM + 1)/SQRT(VSUM)
ENDIF

FIND SEASONAL-KENDALL SLOPE

IN=IN-1
CALL SORT(SLOPES,IN,SMED)
SITESL(J) = SMED

CALCULATE CONFIDENCE INTERVALS ABOUT THE SLOPE
CALL CONINT{NSS,VSUM,SLOPES,CISIS(1,1,d),NUME,CISIS(1,2,d))

IF LAST CALL THEN CALCULATE FINAL KENDALL SLOPE

IF (.NOT.LAST) GOTO 140
DO 130 I=1,N
IS = NYSSLOPE(I) .
CALL SORT(YSSLOPE(1,1),IS,SMED)
SEASSL(I) = SMED
CALL CONINT{IS,VSEA(I),YSSLOPE(1,1),CISES{(1,1,1),
NUME,CISES(1,2,1))}
CONTINUE

RETURN
END

dhkkdkkhkdkdhdhkhhhkkhdkrkhhkhhdhkhrhhhk Ak hkhhdddrdrrkhhkkhhhhkd

SUBROUTINE KEND(X,Y,S,N,SLOPE,SMED,NS)

Thkkdkhhkhdkkkhkkhkhkhkkkhkrhhddkdihdhhhkdhkkkhkhdhitdhidhdhikhdiik

THIS ROUTINE CALCULATES THE KENDALL STATISTIC S

) S ARRAY OF DATA FOR ONE SEASON AND N YEARS.

Y eeeenen ARRAY OF YEARS CORRESPONDING TO THE DATA (USED
FOR MULTIPLE OBSERVATIONS).

S veeiiie OUTPUT KENDALL STATISTIC.

N ... NUMBER DATA POINTS IN THIS SEASON.

SLOPE ... ARRAY OF CALCULATED SEASONAL KENDALL SLOPE ESTIMATORS.
THE SLOPE ESTIMATOR IS THE MEDIAN OF ALL THE SLOPE
ESTIMATES THAT GO WITH S, INSTEAD OF JUST THE SIGN.

SMED .... MEDIAN SLOPE FOR EACH CALL TO THIS SUBROUTINE.
NS ...... NUMBER OF SLOPE ESTIMATES CALCULATED.
S = SUM[SIGN({X(J)-X{1))] WHERE I=1,N-1 J=1+1,N
SIGN(X) = +1 IF X > 0
SIGN(X) = 0 IF X =0
SIGN(X) = -1 IF X < 0

IF MULTIPLE OBSERVATIONS OCCUR IN TIME, THEN S = 0.
REAL X(1), Y{(1), SLOPE(1)

S =0.0

NS =0

DO 120 I=1,N-1
X1 = x(I)
YI = Y(I)
DO 110 J=1+1,N
XD = X(J) - XI
YD = Y(J) - YI
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IF (YD.NE.0.0) THEN
IF (XD.GT.0.0) THEN
$=5+1.0
ELSE
IF (XD.LT.0.0) S =5 - 1.0
ENDIF

XD/YD
ENDIF
CONTINUE
CONTINUE

FIND MEDIAN SLOPE. 1ST SORT AND THEN PICK MEDIAN
CALL SORT(SLOPE,NS,SMED)

RETURN
END

---------------------------- Frkkkkdkdokddkdhkdddkdokdkddk

SUBROUTINE TIES(X Y,N,VAR)

SUBROUTINE TO CALCULATE THE CORRECTION FACTOR DUE TO TIES

AND CALCULATE THE VARIANCE OF THE KENDALL S STATISTIC.

VAR(S) = [N(N-1)(2N-5) - NT1 - NU1]/18 +
NT2*NU2/[IN(N-1){N-2)] + NT3*NU3/[2N{(N-1)]

N = NUMBER DATA (INPUT TO SUBROUTINE)
NT1 = SUM[Ti*(Ti - 1)*(2*Ti + 5)1 i=1tog
NU1 = SUM[Uj*(Uj - 1)*(2*UJ +5)] j=1toh
NT2 = SUM[Ti*(Ti - 1)*(Ti - 2)] i =1 to g
NU2 = SUM[Uj*(uj - 1)*(Uj - 2)] j=1toh
NT3 = SUM[Ti*(Ti - 1)] i=1ltog
NU3 = SUM[Uj*(Uuj - 1)] j=1toh
INPUT TO SUBROUTINE:
X .... VECTOR CONTAINING DATA
.... VECTOR CONTAINING YEARS (TIME)
N .... NUMBER OF VALUES IN X AND Y

VAR .. OUTPUT VARIANCE OF THE KENDALL Z STATISTIC

REAL X(1), Y(1)
INTEGER*2 INDEXT(100), INDEXU(100)

COUNT TIES
INDT

o

[w]

—

)

on on
< — HII?‘C)C

C><D

IND
IF (1. EQ N) GOTO 130

CHECK TO SEE IF THIS TIE HAS ALREADY BEEN COUNTED
IF (I.GT.1) THEN
DO 110 K=1,1-1
IF (X(K).EQ.XI) XI = -999.99

IF (Y(K).EQ.YI) YI = -999.99
CONTINUE
ENDIF
DO 120 J9=I,N
IF (XI.EQ.X(J)) INDT = INDT + 1

IF (YI.EQ.Y(J)) INDU = INDU + 1
CONTINUE
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INDEXT(I) = INDT
INDEXU(I) = INDU

CONTINUE

CALCULATE CORRECTION FACTORS

NT1 =0

NT2 =0

NT3 =0

N1 =0 -

NUZ2 = 0

NU3 = 0

DO 150 I=1,N
NT = INDEXT(I)
NU = INDEXU(T)
NT1 = NT1 + NT*(NT - 1)*(2*NT + 5)
NU1 = NU1 + NU*(NU - 1)*(2*NU + §)
NT2 = NT2 + NT*(NT - 1)*(NT - 2)
NU2 = NU2 + NU*(NU - 1)*(NU - 2)
NT3 = NT3 + NT*(NT - 1)
NU3 = NU3 + NU*(NU - 1)

CONTINUE

CALCULATE VAR(S)

VAR = N*(N - 1.0)*(2.0*N + 5.0)/18.0

IF (N.LE.2) GOTO 160

VAR = (N*(N - 1.0)*(2.0*N + 5.0) -~ NT1 - NU1)/18.0 +
1 NT2*NU2/(9.0*N*(N - 1.0)*(N - 2.0)) +

2 NT3*NU3/(2.0*N*(N - 1.0))

RETURN
END

Kk hh kTR A Ak kI Ak kAT hRAAdhkdhRhhlhkkhhkrkhkdkhhdkhkkkdhdkhk

SUBROUTINE RANK(X,R,N,NC)

dddkdddkhkhkkkkkhhkhkhkdkdkdhkdddhhhhhhhdikkihkhikkhikhkhrhkkthik

THIS ROUTINE RANKS THE DATA IN VECTOR X

X .... ARRAY TO BE RANKED

R .... OUTPUT ARRAY OF RANKS

N .... NUMBER OF VALUES IN X

NC ... ARRAY OF THE NUMBER IN EACH RANKING

DIMENSION X(1), R(1), NC(1)

DO 110 I=1,N
NC(I) =
R(I)

CONTINUE

0
0.0

DO 130 I=1,N
XI = X(1I

D0 120 J
IF (ABS
(d

(1

o
(XI-x{J)).L
) )

)
ELSE
IF (XI.GT.X(J)) THEN
R(I) = R(I) + 1.0
ELSE
R(J) = R(J) + 1.0
ENDIF
ENDIF
CONTINUE
CONTINUE

R
R




C
c
c

140

[}

OOOOOOOOOOOO0

110

i 120
: 130
: 140

150

rIIIIIIlIIIIIIIIIIIIIIlllllllllllllllIlIIIIIllllllllllllllllh--—‘*

288 Appendix B

COUNTING NUMBER IN RANKS (NUMBER IF THERE WERE TIES)

CONTINUE

RETURN
END

Tk kR AR ARk Akkh bk hhk kA kh kA Ak ok kkkdekkhkkhkkddhdkk

SUBROUTINE SORT(X,N,SMED)

Rk A A AR AT AR AR T I IR AR I AR Rk h ARk khdkdk Ak hhdkdk dd

THIS SUBROUTINE SORTS THE ARRAY X AND ALSO RETURNS
MEDIAN. USES BUBBLE SORTING.
THIS ROUTINE CALLS THE ROUTINE RANK TO RANK THE DATA.

X..... ON INPUT X IS THE ARRAY TO SORT,
ON OUTPUT X IS THE SORTED ARRAY.
N..... NUMBER IN ARRAY X.

SMED .. RETURN MEDIAN VALUE OF X.
FOR THIS ROUTINE AS IS, N MUST BE LESS THAN 7410.

PARAMETER NTTOT = 10000
COMMON /T/ ITO
DIMENSION X(1), WORK(NTTOT), RANKS(NTTOT), NC(NTTOT)

SMED = 0.0
IF (N.LT.1) GOTO 150
SMED = X(1)
IF (N.EQ.1) GOTO 150

ITEMP = 1
DO 140 I=2,N
IF (X(ITEMP).LE.X(1)) 60TC 130
TEMP = X(I)
DO 110 J=ITEMP,1,-1
dl = J
IF (TEMP.GE.X(J)) GOTO 120
X(9+1) = X(J)
CONTINUE
JdI =0
X(JI+1) = TEMP
ITEMP

fon
—

CONTINUE
FIND MEDIAN

KH = N/2
NF = 2*NH
IF (NF.NE.N) THEN

SMED = X(NH+1)
ELSE

SMED = (X(NH+1) + X(NH))/2.0
ENDIF

RETURN
END
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SUBROUTINE CONINT(N,VAR,SLOPE,CIL,NCI,CIU)

*hhkkkkhkAhkhkhk Ak kdhkdhkdkhddhdhhdkhkhhhkdkkhdhhdkhhkk

THIS ROUTINE CALCULATES THE CONFIDENCE INTERVALS
ABOUT THE KENDALL SLOPE.

N ... NUMBER DIFFERENCES IN CALCULATING SLOPE,

VAR- .... VARIANCE OF THE KENDALL S STATISTIC.

SLOPE .. ARRAY CONTAINING SLOPES.

CIL .... ARRAY OF LOWER LIMITS. ONE FOR EACH ALPHA LEVEL.
CIU .... ARRAY OF UPPER LIMITS. ONE FOR EACH ALPHA LEVEL.

LOWER LIMIT
UPPER LIMIT

M1 th LARGEST SLOPE ESTIMATE.
M2 + 1 th LARGEST SLOPE ESTIMATE.

M1 = (N' - C)/2

M2 = (N' + C)/2
N' = NUMBER OF ORDERED SLOPE ESTIMATES
C = Z * SQRT[VAR(S)]

Z 1S FROM A NORMAL TABLE FOR ALPHA/2

THIS ROUTINE IS SET UP TO HANDLE ALPHA = .01, .05, .10, .20.
TO ADD NEW ALPHAS OR CHANGE THE EXISTING ALPHAS, TWO LINES OF
CODE MUST BE CHANGED. ADD TO OR CHANGE THE DATA STATEMENT BELOW.
ALSO, IF THE NUMBER OF ALPHAS IS CHANGED, CHANGE THE STATEMENT

NCI = 4.

OO0 (o]

PARAMETER NA = 10, NE = 2, NSEAS = 12, NSIT = 10
COMMON /CI1/ ALP(NA), ZA(NA)

c
REAL SLOPE(1), CIL(1), CIU(1)
DATA ALP, ZA / .01, .05, .10, .20, 6*0.0,
1 2.576, 1.960, 1.645, 1.282, 6*0.0 /
c
NCI = 4
C

C CALCULATE CONFIDENCE INTERVALS ABOUT THE SLOPE
DO 100 I=1,NCI

CA ZA(1)*SQRT(VAR)

XMl = .5*(N - CA)

XM2 = [5*(N + CA) + 1

M1
M2
XD1
XD2

XM1
XM2
XMl - M1
XM2 - M2

CHECK TO SEE IF ENOUGH DATA TO CALCULATE CI.

-99.99 MEANS THAT N IS TOO SMALL TO CALCULATE THE CI.
IF (M1.GE.1) THEN

CIL(I) = XD1*SLOPE(MI1+1) + (1.0 - XD1)*SLOPE(M1)
ELSE

CIL(I) = -99.99

ENDIF

OO0

IF (M2.LE.N) THEN
CIU(I) = XD2*SLOPE(M2+1) + (1.0 - XDZ)*SLOPE(M2)
ELSE
CIU(1) = -99.99
ENDIF
c
100 CONTINUE
c

RETURN
END
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SUBROUTINE CHICDF(C,N,P)
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THIS ROUTINE COMPUTES THE CUMULATIVE CHI-SQUARE
PROBABILITY.

... COMPUTED CHISQUARE VALUE.
«+. DEGREES OF FREEDQOM,
. RETURNED CUMULATIVE CHI-SQUARED PROBABILITY.

OOOOOOOO0 o
v=Z0
.

P=0.0
IF (C.LE.0.00001) GOTO 50
IF (N.LE.O) RETURN
A = FLOAT(N)
GAMMA = 1.0
10 GAMMA = GAMMA*C/A
A=A-2
IF(A) 20,30,10
20  GAMMA = GAMMA*SQRT(2./C)/1.7724578

30 C2-=1.0
€3 = 1.0
D = FLOAT(N)
40 D =D+2.0
€3 = C3*C/D
€2 =C€2+¢C3

IF (C3.GE.0.5E-7) GO TO 40
P = EXP(-C/2.)*C2*GAMMA

5 P=10-P
C
RETURN
END
c
C FEAEAATREAAAARAFRA R LA AR R IR AR bR ATk hkddhddddhk
SUBROUTINE PNORM(X,P)
C btk A 22 g s b2 s 2 2T 2T 2T 2 2T 2 R Y S ey
c
C THIS ROUTINE COMPUTES A VERY QUICK AND CRUDE
c CUMULATIVE NORMAL PROBABILITY.
C
C X ... COMPUTED NORMAL VALUE.
c P ... RETURNED NORMAL CUMULATIVE PROBABILITY.
c
C EXP ... IS THE EXPONENTIAL FUNCTION.
C ABS ... IS THE ABSOLUTE VALUE FUNCTION.
c
DOUBLE PRECISION PC
c
P =5
IF (X.EQ.0.0) GOTO 20
AX = ABS(X)
PC = EXP(~((83.0*AX + 351.0)*AX + 562.0)/(703.0/AX + 165.0))
P =1.0 - 0.5*PC
IF (X.GT.0.0) GOTO 20
P =10-7P
C
20 RETURN
END
c

I
H
¢
J
F
1
¢
T
i
i




o

OO0

OO0

c
C

200

TREND
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SUBROUTINE WRITE1(IFOUT,NSITE,ALPHA)
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THIS SUBROUTINE QUTPUTS THE RESULTS FROM ALL THE TREND
TESTS.

IFOUT .... OUTPUT UNIT NUMBER
NSITE .:-.. NUMBER OF SITES.

180, NSIT = 10,

PARAMETER NYRS = 30, NSEAS = 12, NTOT =
= = 10, NE = 2

1 NTTOT = 16110, NYS = 2500, NA
COMMON /DATA/ NYEAR, YEAR(NTOT}),
1 NSEASON, SEASON(NTOT),

2 NDATA(NSIT),  DATA(NTOT)

COMMON /SORT/ SORTY(NTOT), SORTS(NTOT), SORTD(NTOT), NCR(NTOT)
COMMON /SLOPE/ ZSLOPE(NSEAS,NSIT), SEASSL(NSEAS), SITESL(NSIT),
1 YSSLOPE(NYS ,NSEAS) , NYSSLOPE(NSEAS)

COMMON /ZST/  ZSTAT(NSEAS,NSIT), NSTAT(NSEAS,NSIT),

ZSEASON(NSEAS), PSEASON(NSEAS),

2SITE(NSIT), PSITE(NSIT)

COMMON /CI1/ ALP(NA), ZA(NA)

COMMON /CI2/ CIMKS(NA,NE,NSEAS,NSIT), CISIS(NA,NE,NSIT),

1 VSEA(NSEAS), NUME, CISES(NA,NE,NSEAS)

COMMON /WR1/ SENT(NSIT), PSENT(NSIT), ZKEN(NSIT), PKENZ(NSIT)
COMMON /WR2/ NC(NTOT), NCRS{NTOT,NSIT), NCRC(NSIT)

1 SSTAT({NSEAS ,NSIT)

COMMON /HOMO/ . TOTAL, NTOTAL, PTOTAL,
1 HOMOGEN, NHOMOGEN , PHOMOGEN ,

2 SEASONAL, NSEASONAL , PSEASONAL,

3 SITE, NSITES, PSITES,

4 SITESEAS, NSITESEAS, PSITESEAS,

5 TRENDS, NTRENDS, PTRENDS,

6

7

BYTE INFILE(80), OUTFILE(80), FMT(80), IFPRT

CHARACTER AOUT*66, C1*5, C2*11, C3*12, C4*12, C5*10, C6*12
CHARACTER DOUT*58, D1*8, D2*12, D3*12, D4*10, D5*12

CHARACTER CNL*10, CNU*10

EQUIVALENCE (AOUT(1:5), C1), (AOUT(6:16),C2), (AOUT(17:28),C3),

1 {AOUT(29:40),C4),(AOUT(43:52),C5), (AOUT(53:64),C6),

2 (AOUT(33:42),CNL), (AOUT(57:66),CNU)

EQUIVALENCE (DOUT(1:8), D1), (DOUT(9:20),D2), (DOUT(21:32),D3),
1 (DOUT{35:44),D4), (DOUT{45:56),D5),

2 (DOUT(25:34) ,CNL), (DOUT(49:58),CNU)

HOMOGENEITY STUFF

IF (NTOTAL.GT.1) WRITE(IFOUT,300)

1 TOTAL, NTOTAL, PTOTAL

IF (NHOMOGEN.NE.O) WRITE(IFOUT,310)

1 HOMOGEN, NHOMOGEN, PHOMOGEN

IF (NSEASONAL.NE.O0 .AND. NSEASONAL .NE.NHOMOGEN) WRITE(IFOUT,320)
1 SEASONAL , NSEASONAL, PSEASONAL

IF (NSITES.NE.O .AND. NSITES.NE.NHOMOGEN) WRITE(IFOUT,330)
1 SITE, NSITES, PSITES

IF (NSITESEAS.NE.O) WRITE{IFOUT,340) :

1 SITESEAS, NSITESEAS, PSITESEAS

IF (NTOTAL.GT.1) WRITE(IFOUT,350)

1 TRENDS,  NTRENDS,  PTRENDS

IF (PSEASONAL.GT.ALPHA.AND.PSITES.LT.ALPHA.AND.NSEASON.GT.1)
1 WRITE(IFOUT,370) ((I,ZSITE(I), PSITE(I)),I=1,NSITE)

IF (PSEASONAL.LT.ALPHA.AND.PSITES.GT,ALPHA.AND.NSEASON.GT.1)
1 WRITE(IFOUT,360) ({I,ZSEASON(I),PSEASON(I)),I=1,NSEASON)

SEN SLOPES AND CONFIDENCE LIMITS FOR EACH SEASON.
WRITE(IFOUT,200)
FORMAT(//

291
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1 T26'SEN SLOPE'/T20'CONFIDENCE INTERVALS'//
2 4X,'SEASON ',4X,'ALPHA' ,4X,'LOWER LIMIT',4X,'SLOPE’',4X,
3 'UPPER LIMIT') ‘

c
DO 260 k=1,NSEASON
M= 1
DO 250 J=1,NUME
Dl = 1 1
CNL = * '
CNU = '
D3 = 1 L}
Ds = 1 1
IF (FM.EQ.1) THEN
ENCODE(8,210,D1) K
210 FORMAT(18)
ENDIF
C
ENCODE(12,220,D2) ALP(J)
c
CL = CISES(J,1,K)
IF (CL.EQ.-99.99) THEN
CNL = 'N TO SMALL'
ELSE
CNL = * '
ENCODE(12,220,D3) CL
220 FORMAT(F12.3)
ENDIF
c
ENCODE(10,230,D4) SEASSL(K)
230 FORMAT(F10.3)
c
CU = CISES(J,2,K)
IF (CU.EQ.-99.99) THEN
CNU = 'N TO SMALL'
ELSE
CNU = '
ENCODE(12,220,D5) CU
ENDIF
c
WRITE(IFOUT,240) DOUT
240 FORMAT(A)
M = 2
250 CONTINUE
WRITE(IFOUT,*) -
M =1
260 CONTINUE
ENDIF
c
300 FORMAT(1H1/' HOMOGENEITY TEST RESULTS'//
7 T48,'PROB. OF A'/
1 ' SOURCE',T20,'CHI-SQUARE',T40,'DF',T47,
1 'LARGER VALUE'/X,57('-')/
1 ' TOTAL *,720,F9.5,737,15,T49,F7.3)
310 FORMAT( ' HOMOGENEITY  *,T20,F9.5,T37,15,T49,F7.3)
320 FORMAT( '  SEASON +,T20,F9.5,737,15,749,F7.3)
330 FORMAT( '  STATION +,720,F9.5,137,15,T49,F7.3)
340 FORMAT( '  STATION-SEASON',T20,F9.5,T37,15,T49,F7.3)
350 FORMAT( * TREND *,T20,F9.5,137,15,T49,F7.3)

360 FORMAT(///T16,' INDIVIDUAL SEASON TREND'/
1 T41,'PROB. OF A',/
2 4X,'SEASON',5X,'CHI-SQUARE',6X,'DF',6X,'LARGER VALUE'/
3 <NSEASON>(18,2X,F14.5,’ 1 ',F14.3/))
370 FORMAT(///T15,'INDIVIDUAL STATION TREND'/T57,/
1 T41,'PROB. OF A',T57,/
2 4X,'STATION',4X,'CHI-SQUARE',6X,'DF',6X,'LARGER VALUE'/

3 <NSITE>(I8,2X,F14.5,' 1 ',F14.3/))
c

WRITE{1FOUT,380)
380 FORMAT(1H1)
c
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c SEASONAL KENDALL STATISTICS

IF (NSEASON.GT.1) THEN
WRITE(IFOUT,390)
ENDIF
390 FORMAT(//T29,'PROB. OF EXCEEDING'/T29,'THE ABSOLUTE VALUE',
1 /T12,'SEASONAL',T26,'OF THE KENDALL STATISTIC'/
2 ' STATION',T12,'KENDALL',T24,°'N',T30,'(TWO-TAILED TEST)')

IF (NSEASON.GT.1) THEN
DO 410 I=1,NSITE
N = NCRC(I)
WRITE(IFOUT,400) I, ZKEN(I), N, PKENZ(I)
400 FORMAT(15,2X,F11.5,16,4X,F12.3)
410 CONTINUE

c SEASONAL KENDALL SLOPES

WRITE{IFOUT,500)
500 FORMAT(//
T19'SEASONAL-KENDALL SLOPE'/T20'CONFIDENCE INTERVALS'//
4%, 'STATION' ,4X, 'ALPHA' ,4X, 'LOWER LIMIT',4X,'SLOPE’ ,4X,
'UPPER LIMIT')

w N =

DO 560 K=1,NSITE
FM =1
DO 550 J=1,NUME
Dl f—) 1
CNL
CNU
D3
D5 =
IF {FM.EQ.1) THEN
ENCODE(8,510,D1) K
510 FORMAT(18)
ENDIF

ENCODE(12,520,02) ALP(J)

CL = CISIS(J,1,K)

IF (CL.EQ.-99.99) THEN
CNL = 'N TO SMALL'
ELSE

CNL = ' !
ENCODE(12,520,D3) CL

520 FORMAT(F12.3)
ENDIF

ENCODE(10,530,D4) SITESL{K)
530 FORMAT(F10.3)

CuU = CISIS(J,2,K)

IF (CU.EQ.-99.99) THEN
CNU = 'N TO SMALL'
ELSE

CNy = ! !
ENCODE(12,520,D5) CU
ENDIF

WRITE(IFOUT,540) DOUT

540 FORMAT(A)
M= 2
550 CONTINUE
WRITE(IFOUT,*)

M= 1 '

560 CONTINUE
ENDIF

SEN STATISTICS

OO

IF (NSEASON.GT.1) THEN
WRITE(IFOUT,600)
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600 FORMAT(//729,'PROB. OF EXCEEDING'/T29,
1 "THE ABSOLUTE VALUE'/T27,'OF THE SEN T STATISTIC'/
2 ' STATION',T13,'SEN T',T24,'N',T30,
3 ' (TWO-TAILED TEST)'/)

c

DO 630 1=1,NSITE
N = NCRC(I)
IF (SENT(I).EQ.0.0) THEN
WRITE(IFOUT,610) 1

610 FORMAT(15," MISSING VALUES IN DATA')
ELSE
WRITE(I1FOUT,620) I, SENT(I), N, PSENT(TI)
620 FORMAT(15,2X,F11.5,16,4X,F12.3)
ENDIF
630 CONTINUE
ENDIF

C INDIVIDUAL MANN KENDALL Z STATISTICS
c

WRITE(IFOUT,640)
640 FORMAT(///T49,'PROB. OF EXCEEDING'/,T21,"MANN',T49,
1 'THE ABSOLUTE VALUE'/T20,'KENDALL',
1 T49,'0F THE Z STATISTIC',/,723,'S',
1 T34,'7',750, ' (TWO-TAILED TEST)'/
2 ' STATION SEASON STATISTIC STATISTIC',
3 ! N IF N> 10")

N = NSEASON
IF (N.EQ.0) N = 1
DO 670 J=1,NSITE
DO 670 I=1,N
7 = ISTAT(1,d)
CALL PNORM(Z,PZ)
IF (Z.6T.0) THEN
PZ = 2*(1.0 - PZ)
ELSE
PZ = 2*PI
ENDIF
NS = NSTAT(I,J)
IF (1.EQ.1) THEN
WRITE(IFOUT,650) J,1,SSTAT(1,d),Z,NS,PZ
650 FORMAT(/15,19,F11.2,F12.5,17,2X ,F14.3,6X)
ELSE
WRITE(IFOUT,660) I, SSTAT(1,J), Z
660 FORMAT(5X,19,F11.2,F12.5,17,2X ,F1
ENDIF
670 CONTINUE —
C

» NS, PZ
4.3,6X)

C SEN SLOPES FOR MANN KENDALL TEST
c

WRITE(IFOUT,700)
700 FORMAT( //T29'SEN SLOPE'/T24'CONFIDENCE INTERVALS'//,
1 ' STATION',4X,*SEASON',5X,"ALPHA' ,4X,'LOWER LIMIT',
2 4X,'SLOPE' ,4X,"'UPPER LIMIT')
c
DO 780 K=1,NSITE
M=1
D0 770 I=1,N
DO 760 J=1,NUME
Cl
c2
CNL -
CNU
C4
Cé -
1F (FM.EQ.1) THEN
: ENCODE(5,710,C1) K
710 FORMAT(15)
ENCODE(11,720,C2) T
720 . FORMAT(111)
: ENDIF :

it nn oo
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C
IF (FM.EQ.2) ENCODE(11,720,C2) I
c
ENCODE(12,730,C3) ALP(J)
c
CL = CIMKS(J,1,1,K)
IF (CL.EQ.-99.99) THEN .
CNL = 'N TO SMALL' .
ELSE b
TONL = '
ENCODE(12,730,C4) CL
730 FORMAT(F12.3)
ENDIF
C
ENCODE (10,740,C5) ZSLOPE(I,K)
740 FORMAT(F10.3)
C
CU = CIMKS(J,2,1,K)
IF (CU.EQ.-99.99) THEN
CNU = 'N TO SMALL'
ELSE
CNU =
ENCODE(12,730,C6) CU
ENDIF
C
WRITE(IFQUT,750) AOUT
750 FORMAT(A)
FN = 3
760 CONTINUE
FM = 2 :
WRITE(IFOUT,*) 5
770 CONTINUE
FM = 1
780 CONTINUE
C

RETURN
END
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Symbols

B Sign test statistic (18.1.1)

C - ¢ Dollars available for collecting and measuring samples, not
including fixed overhead expenses (5.6.1)

Ch Cost of collecting and measuring a population unit in stratum ;
h (5.5

1 -f Finite population correction factor (4.2)

Ju = n,/N, Proportion of N, population units in stratum 4 that are measured '
5.2) i

1 - f, Finite population correction factor for stratum /4 (5.2)

Ju = m/M Proportion of the M subunits selected for measurement (6.2.1) ‘

Jv = n/N Proportion of the N primary units selected for measurement ‘
6.2.1) ‘;

F, Friedman’s test statistic (18.1.3) l

GM Geonsetric mean (13.3.3) i

GSE Geometric standard error (13.4) T

I Total amount (inventory) of pollutant in the target population |
4.2)

I Estimate of /

K, Kruskal-Wallis test statistic (18.2.2)

L Number of strata (5.1)

M Number of subunits in each primary unit (subsampling) (6.2.1)

N, Number of population units in stratum & (5.1)

n, Number of population units measured in stratum /4 (5.1)

N Number of population units in the target population (4.1)

n Number of population units selected for measurement; more

generally, the number of measurements in a data set (4.2)

Note: The numbers in parentheses are the section numbers where the symbols are first mentioned.
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Symbols 297

‘Number of monitoring stations (4.5.1)

A normal (Gaussian) distribution with mean p and variance o2
(11.D)

The standard normal distribution (11.1)

The proportion of the population that exceeds the value x,
(11.4)

Rank von Neumann test for serial correlation (11.13)
Variance of n measurements (4.2)

Variance of the n, measurements in stratum 4 (5.2)
Estimated variance of [ (4.2)

Winsorized standard deviation (14.2.4)

Estimated standard error of x (4.2)

Estimate of Var(x) (4.2)
Estimated variance of x,, (5.2)

Estimated variance of x;, (9.1.1)
Variance of n log-transformed data (12.1)

(3 — a/2) quantile of the ¢ distribution with n — 1 degrees
of freedom (11.5.2); value that cuts off (100a/2)% of the upper
tail of the ¢ distribution with n — 1 degrees of freedom (4.4.2)

True variance of [ “4.2)
True variance of X (4.2)
True variance of X, (5.2)

The W statistic for testing that a data set is from a normal
distribution (12.3.1)

Proportion of n measurements that were made in stratum h
5.1

Proportion of population units in stratum A (5.1)

Proportion of all subunits that are in primary unit i (6.3.1)

Wilcoxon rank sum test statistic (18.2.1)

Arithmetic mean of n measurements (4.2)

Arithmetic mean of the n, measurements in stratum ki (5.2)

The ith order statistic (ith largest value) of a data set (11.2)
The measurement on the ith population unit (4.2)

Linear regression (double sampling) estimator of the population
mean (9.1.1)

The pth quantile (percentile) of a distribution. That value, X5
below which lies 100p% of the population (11.1)
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E><I 2I

<

Zl —al2

ZP

An,, o)

Ay, 02, 7)

Hy
Hi
Ky

Ky
1 = wo

Pc
0O

¥nl®)

Estimated mean of a stratified population (5.2)
Winsorized mean (14.2.4)
Arithmetic mean of n log-transformed data (12.1)

D’Agostino’s test statistic for testing that a data set is from a
normal distribution (12.3.2) '

1 — /2 quantile of the N(0, 1) distribution (11.5.1); value
that cuts off (100a/2)% of the upper tail of an N, 1)
distribution (4.4.2)

The pth quantile of the N(0, 1) distribution (11.2)

A two-parameter lognormal distribution with parameters u, and
ai, the mean and variance of the logarithms, respectively.
(12.1)

A three-parameter lognormal distribution with parameters u,,
a3, and 7 (12.1)

The true mean over all N units in the target population (4.2)
True mean for stratum A 5.2)
True mean for primary unit i 6.2.1)

True amount of pollutant present in the jth subunit of primary
unit i (6.2.1)

True mean of the logarithms of the population values (12.1)
Population coefficient of variation 4.4.3)
Correlation between stations i and i’ 4.5.1)

Average of all possible cross-correlations between monitoring
stations (4.5.1)

True correlation between measurements / lags apart collected
along a line in time or space (4.5.2)

Infinite series used to estimate the mean and variance of a
lognormal distribution (13.1. 1)

True variance of the N population units in the target population
4.2)

True variance of the logarithms of the population values (12.1)
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rimary

12.1)
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12.1)

Accuracy

Censored data set

100(1 — «)% confidence interval
on a population parameter

Measurement bias
Median

Nonparametric technique

Outlier observation

Precision

Probability sampling

Glossary

A measure of the closeness of measure-
ments to the true value (2.5.2)

Measurements for some population units
are not available, for example, they are
reported as ‘‘trace’” or ‘‘not detected’’
(11.8)

If the process of drawing n samples from
the population is repeated many times and
the 100(1 — @)% confidence interval com-

" puted each time, 100(1 — o)% of those

intervals will include the population param-
eter value (11.5.2)

Consistent under- or overestimation of the
true values in population units (2.5.2)

That value above which and below which
half the population lies (13.3)

One that does not depend for its validity
upon the data being drawn from a specific
distribution, such as the normal or log-
normal. A distribution-free technique
(11.9)

An observation that does not conform to
the pattern established by other observa-
tions in the data set (Hunt et al., 1981)
(11.8)

A measure of the closeness of agreement
among individual measurements (2.5.2)

Use of a specific method of random selec-
tion of population units for measurement
(3.3.2) .

Note: The numbers in parentheses are the section numbers where the terms are first mentioned.
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Random measurement uncertainty

Random sampling error

Representative unit

Sampled population

Statistical bias

Target population

Trimmed mean

Unpredictable deviation from the true value
of a unit (2.5.2)

Variation in an estimated quantity due to
the random selection of environmental
units for measurement (2.5.4)

One selected from the target population
that in combination with other represen-
tative units will give an accurate picture
of the phenomenon being studied (2.3)

Set of population units available for mea-
surement (2.2)

Discrepancy between the expected value
of an estimator and the population param-
eter being estimated (2.5.3)

Set of N population units for which infer-
ences will be made (2.2)

Arithmetic mean of the data remaining
after a specified percent of the n data in
both tails is discarded (14.2.3)

7
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Index

Air monitoring networks, design of,

19

Aligned rank test. See Sen’s test for
trend

Americium, 112-117, 135-136, 249,
251

Analysis of variance (AOV)
related to two-stage sampling, 61
use in compositing, 74-75
using transformed data, 148
when data are missing, 187
Arithmetic mean, 27
rule for use of, 164
Asymmetrical distributions, 152-157,
164-176
Autocorrelation. See also Correlation
over time and space
calculating, 39
correlogram, 38, 96
function, 38
tests, 146-147 :
Autoregressive integrated moving-
average, time series models,
208
Autoregressive trend model, 233

Bayes’ formula, 128
Beta distribution, 155-157
Bias, 11
affecting compliance decisions, 168,
173
from changes in procedures, 205
measurement, 11, 27, 30
sample collection, handling, 27
statistical, 12, 167-168, 172-173,
300 -
when using less-than values, 178
Binomial distribution, 141
Bivariate normal and lognormal distri-
butions, 192
Box-Jenkins time series models
for control charts, 194, 202
to detect trends, 208

e —————
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Carbon monoxide, 29, 143-144
Case study
double sampling using plutonium
and americium, 112-117
ozone over time, 13-15
plutonium in stream sediments,
53-54
trend detection, estimation, 219-223
Censored data sets, 140, 177-185, 299
estimating mean and variance,
178-184
Censoring, Type I and Type 1, 181
Cesium data, 147
Chi-square distribution, 216, 222,
229-240, 246
Cluster sampling, 20-23
Coeflicient of variation, 33, 156
Compliance with standards, 168,
173-174, 194
Compositing, 71-88
basic concepts, design 72
equal size units, 72-79
examples, 76-79, 82--85
number of samples, 78-79
unequal size units, 79-85
Computer codes
Biomedical Computer Programs,
P-Series, 107, 208, 241
to choose grid spacing to detect hot
spots, 119, 121
for comparing populations, 241
for data smoothing, 207
for goodness-of-fit tests, 158
for kriging, 103
Minitab, 208
for moving average control chart,
202
for Rosner’s outlier test, 189-190
for scatter plots, 207
for seasonal Kendall test and slope,
225
Statistical Analysis System (SAS),
208, 241
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Computer codes (Cont.)
Statistical Package for the Social
Sciences (SPSS), 208, 241
for time series analysis, 208
for trend detection and estimation,
274-295
Conditional probabilities, law of, 127
Confidence interval. See also Confi-
dence limits
about a slope (trend), 218
definition, 138, 299
to determine sampling frequency, 93
using Winsorized mean, 180-181
Confidence limits
for means
correlated data, 144-146
independent data, 137-140
for proportions 142-144
for quantiles, 136, 141-142
Control charts, Shewhart, 193-202
construction of, 195-200
examples, 199-201
for lognormal data, 195, 199
for seasonal data, 200-202
for sewage treatment plants, 194,
202
stochastic model for, 194
Correlation
between accurate and fallible mea-
surements, 108-117
between stations, calculation of, 36
Correlation coefficient as goodness-of-
fit test, 158
Correlation over time and space,
35-43, 103
effect on choice of sampling design,
96
effect when detecting and estimating
trends, 2035, 207
effect on mean and variance, 35-42,
140
effect on statistical tests, 243
Cost-effectiveness of sampling plans,
17-19
Cost function for allocating samples
in compositing, 78-79
in double sampling, 107-117
in stratified random sampling,
50-51
in two-stage sampling, 63

CUSUM charts, 194, 207. See also
Control charts, Shewhart
Cycles
sampling, 91-93
test for, 146

D’ Agostino’s goodness-of-fit test,
160-162
Data. See also Less-than values; Limit
of detection (LOD) data
bases, 3
homogeneous, 195
missing, 208, 212, 225, 241
screening and validation, 186-187
Design and analysis problems, over-
view, 2-4
Design of sampling networks, 10,
17-24, 119-131, 208
Detection limit. See Limit of detection
(LOD) data
Distribution-free techniques. See Non-
parametric techniques
Double sampling, 20-23, 106-118
case study, 112-117
comparison to simple random sam-
pling, 107-109
linear regression, 106-111
number of samples, 109-111
ratio, 111-112
stratified, 116-117

Environmental Protection Agency, 9,
93,178
Expected value
of the geometric mean, 172
of the mean, 12, 167
of the variance, 43

Finite population correction factor
for compositing, 74-76, 81-82,
85-88
for multiple systematic sampling, 97
for simple random sampling, 28-30
for stratified random sampling,
47-48, 53
for two-stage sampling, 60-61
Friedman’s test, 245-247

Gamma distribution, 155-157
Geometric mean, 93, 149, 152, 156,
165-166, 168




bias of, for lognormal mean and
median, 172
Geometric standard deviation, 152,
156, 168
Geometric standard error, 173
Geostatistics, 103
Goodness-of-fit tests, 157-163
Grid sampling designs, 21, 93-94,
120
Gross errors and mistakes, 12-13. See
also Outliers
Groundwater
data, 69-70
wells, location of, 10

Hazardous waste site, 10, 15, 20,
120-121
Histogram, 13-15, 158
Hot spots
locating, 119-131
assumptions, 119-120
consumer’s risk (of not
detecting), 121-131
nomographs for grid spacing,
122-124
prior information on, 127-128
when shape of hot spot is
unknown, 129
probability of existing when none
found, 128-129
probability of not hitting, 125-127
size likely to be hit, 125

Intervention analysis. See Time series

Inventory of a pollutant. See Mean and
total amount of pollutant, esti-
mating

Kolmogorov-Smirnov goodness-of-fit
test, 158

Kriging, 101, 103

Kruskal-Wallis test, 250-251

Kurtosis, coefficient of, 156, 158

Less-than values, 177-179, 225
Limit of detection (LOD) data
problems with, 140, 177-178
treating as tied values, 246,
249-250
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use of
in Kruskal-Wallis test, 252
in seasonal Kendall test, 225
in Wilcoxon rank sum test,
248-250

_Liquid effluent data, examples, 53-54,

62-64, 76-79, 82-85
Lognormal distribution
four-parameter, 155
three-parameter, 154-157, 184
two-parameter, 149, 152-157,
181-183
with censored data set, 181-183
confidence limits for mean,
169-171
estimating mean and variance,
164-169
Lognormal trend data, 219-223,
233-236

Mann-Kendall test for trend, 208-217
grouped data, 222-223
multiple sampling stations, 215-217
single sampling station, 208-214
Maximum likelihood estimation,
154-157, 182-183
Mean and total amount of pollutant,
estimating. See also Censored
data sets; Lognormal distribu-
tion
using compositing and three-stage
sampling, 73-74, 80-81
using double sampling, 106-108,
111-112, 116-117
using simple random sampling,
27-29
using stratified random sampling,
46-48
using systematic sampling, 96-100
.using two-stage sampling, 59-63,
65-68
Measurements
accuracy of, 11-12, 299
bias of, 299
in situ, 23
model for (simple random sam-
pling), 27
negative, 155, 177-178
number of. See Number of measure-
ments (samples)
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Measurements (Cont.)
precision of, 11-12, 299
random uncertainties, 11-15, 27,
300
Median
: confidence limits for, 173-174
; definition, 171, 299
to detect trends, 213
i to estimate trends, 217-219,
227-228
estimating with censored data set,
179
Mercury concentrations, 159-162,
183-184
Minimum variance unbiased MVU)
estimator
of lognormal mean, 164~-167
i of lognormal median, 171-172
of normal mean and variance, 140
Missing data, methods for, 177-185,
208-237, 241-244
Monitoring program, types of, 18
MOSUM charts, 194 . '
Multistage sampling, 20-22

National Academy of Sciences, 1977
report, 18
Negative concentrations, 177-178
Nelder-Mean simplex for parameter
estimation, 155
Nevada Applied Ecology Group, 66,
115
Nevada Test Site, 66, 113
Neyman allocation, of samples to
strata, 50
Nonparametric techniques
to compare populations, 241-253
confidence limits for the median,
173-174
confidence limits on proportions,
142-144
definition, 299 _
to estimate and test for trends,
204-240 '
goodness-of-fit test, 158
for quantiles, 141-142
rank von Neumann test, 146-147
Normal distribution, 13-14, 31-34,
52-53
characterizing, 134-141
definition, 132-134, 156
Nuclear weapons material, 112-117

Nuclear weapons tests, 56, 66-68, 95
Number of measurements (samples)
to detect hot spots, 119-131
to estimate the mean and total
amount
using compositing, 78-79
using double sampling, 109-111
using kriging, 103
using simple random sampling,
3042
using stratified random sampling,
50-53 .
using systematic sampling, 90-94
using two-stage sampling, 63-64,
68-69
to estimate the median, 174

Objectives of pollution studies, 1-2,
18
Order statistics
definition, 135
to estimate
median, 171, 173-174, 218-219,
227-229
quantiles, 141-142, 168-169,
174-175, 181-182
Outliers, 186-193
in correlated variables, experiments,
and regression, 191-193
definition, 299
masking of, 188
Rosner’s test for, 188-191
Oxidant data, 61, 242-244, 246-247
Ozone, 13-15, 98-99, 101-102, 104,
155, 174

Percentiles. See Quantiles
Phosphorus, in pond water, 48-49,
52-53
Plutonium, 53-57, 66-68, 99,
112-117
Pollutant, mean and total amount of,
estimating.-See - Mean and total
amount of pollutant, estimating
Pollution studies, types of, 1, 2
Populations, comparing using tests,
241-253
independent data sets, 247-252
related data sets, 241-247
Population units, examples, 7-9
Precipitation networks, design of, 19
Precision of measurements, 11-12,
299
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Probability plotting
to detect outliers, 191-192
to estimate lognormal parameters,
168-169
to estimate quantiles, 135-136,
168-169, 174-175, 181-182
to estimate Weibull parameters, 155
objective method, 175
to test goodness-of-fit, 158
Probability sampling, 20-23, 299
Proportional allocation
of samples to strata, 4748, 51
in two-stage sampling, 68
Proportions, estimates and confidence
limits, 136~137, 142-144

Quantiles. See also Order statistics, to
estimate
confidence limits for, 136
definition, 133

Radium measurements, 29
Random measurement uncertainty, 11,
300
Random number table, 26-27
Random sampling error, 12, 28, 300
Rank von Neumann test for serial cor-
relation, 146-147
Regional means
confidence intervals for, 145-146
estimating, 35-37, 40, 145
estimating the variance of, 35 , 40,
42 :
Regression
robust, nonparametric, 192-193
seasonal, to detect trend, 207
Relative standard deviation. See Coef-
ficient of variation
Representative units, 9-10, 300

Sampled population, 7-9, 300

Sample size n. See Number of mea-
surements (samples)

Sampling fraction. See Finite popula-
tion correction factor

Sampling in space and time, 5-7

Sampling with and without replace-
ment, 28

Seasonal cycle data, 225-236. See
also Cycles

Seasonality

effects on trend detection, 205
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effect of when estimating a mean or
total, 91-93
Seasonal Kendall shope estimator,
27-228
Seasonal Kendall trend test
multiple sampling stations, 231-236
power of, 222
single sampling station, 225-231
when preferred, 207
Sen’s estimator of slope, 217-219
Sen’s test for trend, 230
Serial correlation. See Autocorrelation
Sewage treatment plants. See Control
charts, Shewhart
Shewhart control charts. See Control
charts, Shewhart
Sign test, 242-244
Simple random sampling, 20-22, 26-44
Size of the sample, n. See Number of
measurements (samples)
Skewness, coefficient of, 156
as goodness-of-fit test, 158
as test for outliers, 188
Soil sampling, 67-68
for cesium, 147
design of, 18-19
near a nuclear facility, 135-136,
249-250
on Nevada Test Site, 112-117
of radioactive fallout, 104~105
Space-time conceptual framework, 5—7
Standard error of mean and total
amount
using compositing, 74-78, 81-82
using double sampling, 107-108,
114, 117
using simple random sampling, 28-
29, 42 .
using stratified random sampling,
" 47-48
using systematic sampling, 97-101
using two-stage sampling, 60-68
Stochastic model, 194, 207
Strata, allocation and selection, 48-51
Stratified random sampling, 20-22,
45-57
Subsampling. See Three-stage sam-
pling; Two-stage sampling
Support, of the sample, 5
Systematic sampling, 20-23, 89-105
along a line and over space, 21-22,
90-94
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Systematic sampling (Cont.)
combined with random sampling, 97
compared with random sampling,

94-96
cycles, sampling frequency, 91-93
estimating Var(x), 96-102
grid designs, 21, 93-94, 120
multiple, 96-98
problems with, 23, 89, 92-93, 103
stratified, 96, 98
with trends present, 99-100

Target population, 7-9, 300
for compositing and three-stage
sampling, 72-73
for simple random sampling, 26-27
for stratified random sampling,
45-46
for two-stage sampling, 58
t distribution
to find confidence limits, 138-139,
144-146, 173, 180-181
to find number of samples, 32,
43-44 _
Three-stage sampling, 59. See also
Compositing
Tied (equal-value) data
in Friedman’s test, 245-247
in Kruskal-Wallis test, 250-252
in Mann-Kendall test, 211-214
in seasonal Kendall test and slope
estimator, 226-228
in Sen’s estimator of slope, 218-219
in Sign test, 242-245
in Wilcoxon rank sum test, 247-250
Time series, 90-93, 204-240
models for control charts, 194
Total suspended particulate (TSP)
data, 189-191, 199-200
Trace concentrations. See Less-than
values; Limit of detection
(LOD) data
Transformed data, 2, 103, 195, 199
problems with, 149
reasons for, 148
Trends
basin-wide, 215
detection of
statistical complexities, 205, 207
tests for, 146, 207-240
using control charts. 194

using flow corrections, 207
with multiple data per time
period, 213-215
end corrections, 99-100
estimation of, 96, 207-208,
217-223, 227-228
homogeneity of, 215-217, 222-223,
228-236
global, testing for, 215-217,
231-236
types of, 204-206
Trend surface analysis, 103
Triangular grid design
to detect hot spots, 119-120, 124,
131
to estimate a mean, 94
to estimate spatial distributions, 103
Trimmed mean, 140, 300
with censored data set, 177, 179
t test
for dependent data, 145
to detect trend, 207
for independent data sets, 247
for paired data, 247
using transformed data, 149
when unequal variances present,
248
Two-stage sampling, 20-23, 58-70
examples of, 58, 61-64, 66-69
number of samples, 63-64, 68-69
primary units, equal size, 59-64
- primary units, unequal size, 64-69
with systematic sampling, 98-99

Unbiased estimator, definition, 12
Uniform distribution, 178
Uranium in ground water, 212-213

Variability, environmental, causes of,
10-11

- Weibull distribution, 155-157

Weighted mean, 4647, 65-66,
80-86, 97, 103, 117

W goodness-of-fit test, 158-160

Wilcoxon rank sum test, 247-250

Wilcoxon signed rank test, 242,
244-245

Winsorized mean and standard devia-
tion, 140, 177, 180-181




