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Sununary

Expectations;ﬁeduced from the probability density functions of Fisher are -

used to develop further the statistics of points on a sphere. The paper - e

presents unbiased estimators of the precision parameter x in terms of
: vector deviations both for cases when the true direction p is known and
unknown. On the basis of a one way random effect vector model, the
scatter of various sampling distributions of means are derived as functions
of the within (k,) and between (k) sites scatter. The relations take the
curvature of the sphere into account and extend the analysis of dispersion
on a sphere to include highly-scattered distributions of palaecomagnetic
data. In addition to the mean square method, which is modified by a
new expression for the expectation of the mean square between sites,
two alternative ways of estimating x,, and K, are described. The latter
statistics contribute to determine the confidence circle of the overall mean
direction with unit weight to samples and sites respectively. Finally, the
E_‘ theory is applied to palacomagnetic results from the Kaoko lavas of
' South-West Africa.

L. Introduction

' The theory of errors developed by Gauss for linear random variables, was extended
by Fisher (1953) to measurements of positions on a sphere. In this system, extensively
. Used in palacomagnetism, a population of points on a unit sphere is assumed to
k- conform to a theoretical distribution, uniquely defined by a precision parameter x and

= atrue direction symbolized by the unit vector p. Fisher derived the required statistics __

t9 estimate these parameters, the latter by using a mean direction and a confidence
Circle Ays.

Watson (1956) and Watson & Irving (1957) presented a series of statistical tests
telated to Fisherian statistics. In connection with the analysis of dispersion of rema-
P Nent magnetization in rocks these include an F-test to test the significance of the

tween-sites scatter k,. Geophysicists take an interest in this dispersion firstly
because it may be caused by secular variation of the Earth’s magnetic field. Secondly
it is of importance in estimating errors of means in connection with studies of the
Earth’s magnetic field throughout geological time (Nagata 1962; Irving 1964;

cElhingy 1973). A problem arises, however, when quantitative estimates are to be
Mmade of x,, because the available method is approximate and claimed to be valid
. Only for high precision parameters.
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inis paper concerns sampling theory and estimation theory related to Fisherian .
statistics and generalizes the analysis of dispersion on a sphere. It begins with deduc-
tions from the basic functions presented in Section 2 with the purpose of obtaining
functional relations valid for the whole range of precision parameters. The vector
error @ defined as the vector difference between a random unit vector p; in a Fisherian
distribution and the true mean value B, provides an alternative way of referring to
positions on a sphere. Section 3 concerns the expectations of the Cartesian com-
ponents of o, (Z-axis along p) in addition to the expectation E(w,?) of the square of
its magnitude. Knowing p the latter shows that 2 over the mean square of the vector
crrors forms an unbiased estimate of x. Further when applied to a vector model
Py = p+B;+ 0y (see equation (37)), which corresponds to the linear one way random
effect model used for Gaussian analysis of variance (Hays 1972), the expectations lead
to equation (39). It expresses the overall dispersion of sample means «, as a function
of the within-site scatter x, and between-sites scatter x,. This formula and other
expressions in Section 5, derived by taking the curvature of the sphere into account,
reduce, for high precision parameters, to related equations commonly used in palaeo- -
magnetism. .

Section 4 deals with the expectation of R, where R symbolizes the scalar value of
the vector sum R of a sample of N random unit vectors. The validity of the approxi-
mate equation (29) is discussed and made use of in Section 3 as well as in Sections 5
and 6. In the first place it results in an unbiased estimator of x for the frequently -
occurring events when p is unknown. Then, for the general case when a between-sites
scatter does exist, it contributes to derive the overall dispersion of site means , by
means of «,, and k,, in addition to similar functional relations for the scatter x,,, and
Km Of means of sample means and means of site means respectively (equations (45)
and (47)). The error or the confidence circle Ays of the overall mean value with unit
weight on samples and sites respectively are subsequently estimated by means of «,,,
and «,, (equations (4) or (6)). Section 6 reviews the F -test to judge the significance of
a possible between-sites scatter Ky and presents a new formula (60) for the expectation
of the mean square between sites which make the analysis of dispersion less dependent
on the magnitudes of the precision parameters. This method of estimating k., and Ky i
referred to as the ¢ Mean square method ’ to distinguish it from the * Circular standard
deviation method ’ and the ¢ Overall dispersion method * described in Section 7. In
Section 8 the new set of formulae is applied to dispersion analysis of the remanent
magnetization distribution observed in the Kaoko lavas from South-West Africa '
(Gidskehaug, Creer & Mitchell 1975).
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2. Basic functions

Any direction in space may be represented either by a unit vector p from the origin
0 of a X YZ-coordinate system or by the point of intersection q between p and a unit
sphere centred about 0. Generally q(6, @) will be referred to in a spherical coordinate :
system with the polar axis along the positive Z-axis. 4

In this frame equation (1) defines a Fisherian distribution of points on a unit

sphere.
J1(6, ¢) = (x/4 n sinh k) exeos? 1))

J1(0, ¢) symbolizes the probability density of a random point (8, @), specified by its
angular distance @ from the true direction It and by the azimuthal angle ¢. Equation
(1) shows that a Fisherian distribution is symmetrical about p and a high value of the
precision parameter x corresponds to a small scatter (Fisher 1953). '

Equation (2) expresses the probability d P of observing a point in the infinitesimal
area dA.

e

{
]

dP = f1(0,¢) dA = (x/4 nsinh k) e*°* sing dg d¢. ()] !

It concerns the simultaneous distribution ot: 0 and ¢ and results in the txlconditmtelsi
or marginal distribution of by an integration .fx_'om ¢ =0to ¢ = 21r.f thsubsequ.nal
substitution of ¢ = cosf, provides the probability density function of the marg:
distribution of c.

Kekc

2sinh & °

f3(@) = @

i i i i tant value of 0 will define a
irections or points on the unit sphere having a cons ] ) wi i
circgl;l:out the t}:ue mean direction. The ‘ radius 0? of t.he circle w'ltll:m wglacttl}oz
random direction falls with probability P = P(f < 6,) is derived from either eq

(2) or (3)°

0, = arc cos ( LK In(e*— P(e"—e"‘))) . @

i ircular standard deviation 3,
f P equal to 0-63, for example, results in the circular ‘
Qh‘;aciuf? reoquent(lly serves as an alternative expression of dispersion. For laxl;geb\fla.,lqglgi e:;
the approximate formulae (5) and (6) apply at the 0:63 and 0-95 probability

respectively 0)

(6)

i to better than one
by cquation (5) and by the general formula (4) agree :
‘t’gﬁt;aloc;l La:;?gre); \ghen x > 12. However, to get the same accuracy by equation (6)
d 60 (Gidskehaug 1968, p. 62). )
§ h?\?ot\?/ leextc;ebe thcg vector sum of a sample of N unit v?clt!orslzr.agdor(xilgsze)l;c:;g ggr:lhz;
isheri ulation and let R symbolize the length_o R. Fisher (19: u
::?;irrllz'l‘ (ﬂgg'ibution of R and the conditional dlstnbu_txon of C on given R, in term
of the probability density functions (7) and (8) respectively.

B¢, ~ 81k~ ¥ degrees

Oy5 ~ 140k~ * degrees

xk \N 2sinh (kR) R' -
f+(R) = (25inhx) ¢x(R) :
KR elRC (8)
SACIR) =25 (<R)

C symbolizes cosinc of the angular deviation between R and the true direction and
@n(R) refers to the following function of N and R

1

= ——— {(N=R¥"2—-N(N-R-2)""24 ..

N! N
D gy VR z-} - O

In equation (9) s is the largest integer less than %(_N - R). ThI’]S th_e densitgr fugcn;;rl gf
R, which is defined between 0 and N, has ¢ discontinuity’ points at‘_ - ’u - (9),
N’— 6. ... .For values of R larger than N —2 (s = 0) only the first term in equatio :
appears and equation (7) reduces to

1 (N—-R)¥2

=1 (eXR _a~xRy
fo® = G~ e ¢ € e

(10)




Fisher (1953) showed that the dircction of R constitutes the best point estimate of
p. Further, on the. assumption that x is large enough to ignore e™* (x > 3), he
deduced fr.om equation (8) and (10) the uncertainty of the observed mean direc,tion
or the radius Ays of the 95 per cent circle of confidence

N-R
— TR onu-1
Ags = arc cos (l R (20 ’—l)) (1
and an estimate of the precision parameter x given by
N-1
“=N"r- W

Finally, for large k (x > 3) Watson (1956) deduced fi i

ally . rom equation (10) that th
statistic ZK(N -R) hgs a Chi-square distribution with 2(N —1) degrees( ot} freidome
This useful information will be symbolized by '

x22(N—l) = 2k(N—R). (13)

3. Functional relations derived from cosine of the angular deviation of a random unit

vector from the true direction

By means of equation (3) the cxpectation of ¢ = cos 0 is found to be equél to. '

Langevin’s function of «.

+1

E(c) = f ¢fs(c)dc = coth rc——llc~ = L (x) ) (174) ’

-1

which means that the expectation of ¢ approaches unity as k increases.

Let the unit vector p, represent a random ion i isheri
1 observation in a Fish i
(note that p, is short for p,,) erian population

P; =pxi+pyj +pzk' (]5)I

'(Il'hen .cquation (14) also cxpresses the expectation of p's component along the true
irection p = K, because p, = cos 6. Further let the vector differences between p, and
it be referred to as the ¢ vector error’ or the ¢ vector deviation’ ®; and thus ‘

P =pto, (16)

Since the distribution is symmetrical about p (i i i
p (i.e. the Z-axis) the expectatio
X and Y components of @; both become zero. ) P nof the

while El@) = E(@,) =0 (17)

1 1 :
E(®,) = E(p,—1) = coth k— - —1 xom), .
(=) = coth = — — I &=, )

The approximate expression E(w,) = —1/k is accurate to better th

- 3 an '
x = 4 and improves still further as « increases. The dot product of the Vec?o(:(::lrr‘::l En
itself or the square of its scalar value reduces to w,> = 2(1—p,) = — 2w Consejf‘
qugntl)_' equation (19) provides an alternative way to estimate thezprecision z};arameter
which is independent of the orientation of the co-ordinate system.

1 2
E(w;? =2(1— th —)z——
) coth x+ — —- v (19

Letr = R/R be the unit vector of the vector sum of a sample of N random observations
p:(i = 1,... N). A comparison of equations (3) and (8) show that for a given value of

R, the mean direction r conforms to a Fisherian distribution with a precision parameter

equal to kR. Thus by writing
r=p+e 20

we get in a similar way as above

1 2
2y = - —_—) . 21
E(s?) 2(1 coth Rk + RK) R (20

Suppose p is known and that a sample of N random unit vectors is taken from a
Fisherian distribution. Then on the basis of equation (19)

N

- ie.

— 2
5 LW 2(N—-R)) 2(N — Rcosy) 5
= = = = 2
2k =w N N N (22)
where v is the angle between R and p (z-axis),
— N
- :_ . _ e 2
k=2 N — Rcosv ‘ 23)

Consequently, twice the reciprocal mean square of the vector error from the true mean
is an unbiased estimator of the precision parameter x. This estimator corresponds to
equation (1-15) given by Watson (1956). ' -

Generally, however, p is unknown. By writting p; = r+3§; and fixing the z-axis
along r (which symbolizes the unit vector of R), then again from equation (19)

N
82 2(N—-R N
Lo 2R ok =5k @9

Wk, = & =

Equation (29) in the next section shows that 1/k, is a biased estimator of 1/x. However,
in terms of the vector errors an unbiased estimator of 1/« is given by

N
52 _ N-R

Vk=5n=1) N-1

25

which applies for the whole range of x > 3 and for N values at least up to 3x. Note
that equation (25) corresponds to equation (12).

4, The expectation of R

In this section P, o, P4, ; and P, q refer to the probability of observing R in the
intervals (N—2, N), (N—4, N—2) and (N —4, N —0) respectively, and similar suffixes
will be employed to distinguish between the expectation of R derived over the same
intervals. Preferably the expectation of R should be determined by integration over
the whole range of possible values from zero to N. However, due to the complexity
of the general density function (7) the interval (N—2, N) will be considered first.
Equation (10) defines the probability density function of R in this domain. Evidently
it may be used to deduce the expectation of R if the distribution of R confines to the
interval, that is if the probability P(R > N —2) of observing a value of R larger than

N — 7 liec clnse to one.



N .
Pyo=PR>N=2) = f fio(R)dR !
N—-2

4 (e -5 Qe
aso n!

I
"~ @2sinh k)" (

N-2 " !
_e—x(N—Z) z (_])n+N@) . (26) !

n=0 n.
~ The two sums in equation (26) contain the first (N — 1) terms in the power series of
e? and ¢~ 2" respectively. This means that for a given value of x the probability,
decreases and approaches zero as N increases. Consequently the probability
P(R > N—2) does not depend on the absolute value of x, but on how large x is

relative to N. For values of x big cnough to ignore the e™* terms ’ in equation (10)
cquation (26) reduces to

N-2 (2K)" '
= ] —p—2¢ A SnthC A
Py o=1-¢ 2 27 i
and the expectation of R becomes ‘ ‘
N )
ERuo= | Rfio(R)dR 3
N-2 ] o ‘
e*R N-2 N—1-n\ «"(N—-R)"\¥ . b
= R-— t
{ eV u>=:’o ( K ) n! }N-Z .
)
N—1 N-2 N—1- " i
= N- ey (N—Z— ? ) (2"‘) 28)
n=0 K n.
¥
which if N S x (see Fig. 1) reduces to '
N-—1
E(R)=N-— ——x— =(1-1/K)N+ 1/.K‘ ) o (29)

E(R) defined by equation (29) is a lincar function of N. Consequently for a fixed
value of x, E(R) increases steadily as N increases, while due to the third term in equa-
tion (28), then E(R),, ¢ first reaches 2 maximum value, then quickly approaches zero for .
still higher values of N. Calculations on the basis of equations (27), (28) and (29)
show that P, , remains practically equal to 1, while E(R),, o = E(R) to better than
0-001 if N < x (see Figs 1 and 2). Accordingly, we may preliminarily conclude that
provided N < «, equation (29) constitutes a good approximation of the expectation
of R for the whole range of x > 3. _ !
The calculations are now extended to a larger domain. On the basis of equations !

(7) and (9), the probability of observing R in the interval (N —4, N—2) is found to
be, for x > 3

|
|
i

P4'2=P(N—‘4<R<N—2) !
s ey -

Ne=qeax s (N—29) -2

n=0 n!

a=o n!

)
(30) i

A Probability of observing R in specified intervals, K= 20
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which together with equation (27) leads to

@x)

’

ey e

N-2
Pio=P(R>N=4)=1-Ne ™ +e™* ¥ (N-2)— . @
In the same intervals the following formulae for the expectation of R emerges
_, N-2 N—=1-n\ (k)" - N-1
- 2x i - 2x _) e ——
E(R)s,2=¢ ,,>=:o (N 2 K ) n! ¢ N(N 2 K )
N-2 ~1—-n\ .2 ,
te ¥ S (N—2")(N—4— N ") ('f)' ()
n=0 K n.
and
-1 -
E(R), o = N— Nl —e""N(N—z— iV——l)
K K
N=-2 ‘ - N—-1-
+e™ ¥ (N-2) (N—4— Nl ,".)i.(.z'.‘)f SN )
n=0 K - "!-'. '

The relations are illustrated in Fig. 1, which shows P, ¢, P4, » and P, g as func-
tions of N for a chosen precision parameter x = 20. Notice that P, , = 0 when
N = k, then it increases to a maximum at about N = 3k and falls to zero for higher
values of N. E(R),, , behaves in a similar way in Fig. 2, where in addition E(R);, o
E(R),, o and E(R) are graphically displayed. Still E(R)4,0 = E(R), provided the
probably P, , of finding a value of R larger than N—4 is close to one. Table 1,
which lists P, o in per cent for various values of x and N suggests that P, ¢ = 100 per
cent if N < 3x. Consequently by including the interval (N —4, N—2) the validity of
equation (29) has been greatly extended. Most likely it can be proved to apply for
even higher values of N (> 3k) by considering new intervals, and possibly constituting
the general formula for the expectation of R obtaining by integrating R from zero to N.

5, The dispersion of sampling distributions of means deduced on the basis of a one way
random effect vector model

The following description uses palaecomagnetic terminology (Irving 1964). To
study the distribution of remanent magnetization in a rock formation such as a pile of
lava flows, N, (generally five or more) oriented pieces of rocks called samples are
collected from the jth of B sites. p;; will denote the mean direction of stable rema-
nent magnetization directions measured in a number of specimens cut from the ith
rock sample of site j. The intention of this section is to deduce the dispersion x, and
k, of the overall distribution of sample means p;; and site means r; respectively as a
function of the within and between sites scatters. These expressions then form the
basis of similar formulae for the scatter x,,, and x,,, of the means of sample means ma
and the means of site means ml.

Let p;; be the ith observation randomly selected from the jth population in a set of
Fisherian populations having equal precision parameters x,, and true directions p,. Let
also a randomly chosen g, be Fisherian distributed with precision parameters x, about
an overall true direction g. In palacomagnetism ,, and k, correspond to the within and
between-sites scatter respectively, provided p denotes the true remanent magneti-
7ation direction of the rock formation in question and n, symbolizes the true direction



50 55

45

35

Table 1
30

The probability Py o = P(R > N ~—4) of observing R in the interval (N—4, N) for different precision parameters k and sample sizes N,
20 25

15

10

mmwmmmmmwmmwmmmmmmmmwmmmm

888388383288

P vy S vt =t

-

8
8

100-00 100-00 100-00 100-00 100-00 100-00 100-00 100-00

100-00

8838828388888

TN re T vt P Pt vemt v v e v T

8
g

0-00 0-00

0-00

of the site j. From these assumptions it follows that an observation Py ..wnaoa_w
selected from the rock formation has a Fisherian distribution about p, with.a precision
parameter denoted by x, (Fisher 1953, Section 2-33).

Within the given ?wBo the o<2m= dispersion of sample means x, now may be
derived as a function of x,, and x, by means of the vector presentations and functional
relations presented in Section 3. Suppose the unit vectors p;;, p; and p originate from
the origin of a Cartesian co-ordinate system chosen to make the Z-axis coincide with p.
Further let the vector differences ;;, B; and a,; be defined by the equations

pi; = K+, leading to E(w?;) = 2/k,, (39
1, = p+B; leading to E(B) = 2/x, B )
Py = p+oy; leading to E(e?;) = 2/x,. (36)

In analogy of Gaussian statistics f; may be referred to as the between-sites effect.
The equations to the right imply that the values of the different precision parameters
have to exceed (about) three for the approximate formulae of equation (18) and (19)
to be valid. The vector equations on the other hand indicate

.
e r———— o™

&y = 8:+P 37N

o’ =0 :+ P +NA8€" Pn+ @y Biy+ 0y, F. (38)

If the components of o;; and f; are independent of each other the expectation of
equation (38) results in

1
U L. - (39)

. In the above calculations m@? = E(B;,) = 0 and the expectation of the N.ooBvonnnn
of &;; follow from equation (37) and (18). (Notice that mAE:L # —1/k, since the
Z-axis does not coincide with p;.)

E(wy,) = E(ey)—E(B)) = —1/k,+ 1Ky (40)

“ Next we consider the sampling distribution of site means. Let r; denote the unit
v vector of the vector sum R, of N; random observations p;; from site j. According
to equation (21), r; has a within-site scatter about p; equal to R, x, and a overall
distribution about the true direction p assumed to be Fisherian with precision para-

meter x;/. In a similar way to (39)

, _ H x_. _
w = —. : 4
M K,/ Ryk, Ky—1 + Ky @1

Replacement of R; with its expectation obtained by equation (29) leads to

~ _ X.? _. ‘ N
LI _ 42)
K, Nike—D+1 x,—1 + Ky (“2)

which expresses the dispersion of the conditional sampling distribution of site means
given R; = E(R)). Equation (39) and (42) show
K, < Kj < Kp. 43)

io may proceed 2_5 the sampling distributions of means of sample means and

Y U ~b mam Ancmata tha it stnndae Alacn b ced s L W -
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o= 2, IN;observations from B sites ‘
=1

B Nj .
ma= 3 Zl Puy/Ry = Ry/Ry. . . - (44

Jj=1li=

If a random observation Py; belongs to a Fisherian population with precision para.

meter i, about the true direction p, then ma will also be Fisherian distributed aboutp
with an expected precision parameter :

Kma = K, E(RRy) = Nk, ~N+1 = w

Kol (p—1) T )

Finally let ml symbolize the unit vector of the resultant R, of B random site
means ;.

ml = jél l'j/RB = RB/RB- (46)

Again if r; originates from a population with precision parameter x, about p, ml
will belong to a Fisherian distribution with true direction p and an expected dispersion

Km

Bry(xk,—1) (N;ke=N,;+1)
Kmt = K E( B) Kj + Kb2+(Kb—l) (NJ.KW—N_,"f'l)

B+1. ()

The relations derived above apply for the whole range of « > 3, provided the
condition discussed in association with equation (29) is fulfilled.

For comparison, it is of interest to see what the various expressions reduce to for

high values of «,, and «,,. Thus, equations (39) and (42) become

ik, = 1k, + 1/ky (48)

(49)

Further, if «, and «, are large enough to assume that E(Ry) =N and E(Ry) = B
equations (45) and (47) reduce to

iy = 1N, ke, + 1/,

1/Kma = 1/Nio+1/Nk,
1/Kmi = 1/Nx,, + 1/Bx,

(30)

(51)

of which the latter corresponds to equation (17) given by Watson & Irving (1957),
to equation (4.23) of Irving (1964) or to equation (3.31) of McElhinny (1973).

6. The expectation of mean square within sites and mean square between sites

The significance of a possible between-sites effect should be tested prior to esti-
mation of the within and between-sites scatter (Watson & Irving 1957). If the remanent
magnetization distribution of each site in a rock formation conforms to a Fisherian '
distribution with equal precision parameter «,, and if no between-sites scatter exists

(i.e. kp = o0 or B;? = 0) then equation (39) reduces to x, = x,, and according to
relation (13)

Zzz(N—l) = 2K, (N_RN)' (52)

By using the previous notations the expression on the right-hand side of equation (52)

SpitS INLO the TWO IOHOWINEG TEIMS (WIICH dIt LUISSYUALT UBLLIVULTU ad woily

3 (53
Xzz(N—n) = 2K, 121 (N]_Rj)
> Ry~ (54)
Xzz(n-x) = 2Ky (ng R, RN) .
Consequently, the ratio between the mean square within sites
B
. 2 (N,—R) 55
MS-within = 2N—B)
and the mean square between sites
S R,— R o
MS-between = ZR=Ry (56) |

2(8-1)

, _ Lo te
"1, conforms to a F-distribution in case of a true null-hypothesis: “ No between

scatter exists’. On the other hand if the null—hygothesis hasd to5 be ;?:;:e:ﬁ ;,, an(:if
may be estimated from the expectation of equation (55) an ! (56). uationber(29))
:;mplz,s N, in each of the B sites is equal, then from the relations (see eq
i

N,—-1 7
E(R)) =N;———

N-1
ERy)=N—— &8

Ka
we get
11

E(MS-within) = 7-’;‘; (5.9)

(60)

i N—-1 N-B N (N—I)Kb)
E(MS-between) = (

Z(B—]) Ky - Ke Kw(Kb—])

The above ¢ Mean square’ method to estimate x,, and x, may a%pl): fc:;l;ltuit‘:):rlzg;t;
range of precision parameters larger than three: However, the ?s:a.l Ry
forgthe F-test is derived from the density function of }13 mz;h;e::) :1 v Signiﬁcz;ntly
Accordingly care must be taken when P; o = P(R >b _k Secomes signifcattly
less than one (see Section 4) and possibly the F:test 1::11 ts o ot 1o wtion,
larger than x,. Before leaving the ¢ Mean square’ meth d i l§mjlar o vy
thagi the expeétation of MS-between sites reduces to a relation si .

Watson & Irving (1957), i.e.

1(L+_(_N—_l)_‘/(£—_l)_) (61)

E(MS-between) = 7 \x Ky

if equation (48) is used instead of (39) in the above calculations.



/. All€rnative metnoas o1 esumanng the petween- and within-site scatter

If a between-sites effect exists, equations (39) a imate

‘ _ 2 nd (42) may be used to estimate

Kw apd Ky on the basis of the overall dispersion of sample means and site means. An

ellmma'txon of k,, from the two equations and a subsequent division of the algebraic

expression by x,—1 results in the following equation of degree three
Ky +prey +qrp+5 = 0 '

where (62)

p= (Ny=1) (L +5x,+ K, — K, k)
Nyx,—x;—N;+1

q= _(N_I—l) (K.+K,+Ka K’)
Nj K‘—Kl—'Nj"‘l

(N.I_ l) Kq Kp

S ==
Nj K.-K,-‘Nj"l']

Solutions of equation (62) are readily obtai ‘
Solut y obtained on a computer. The fact that onl
positive and real values of the precision parameters will be considered and the restric):

tions imposed by relation (43) are generally sufficient to eliminate two of the three’

possible solutions of k. k., is then obtained by inserti i in eithe
eaton (39 ot (42, y rting the solution of k, in either
Estimates of k, and k, used in the above method are determined b i
, t tion (12).
Preferably the number of samples in each site should be equal, but if stam
might be inserted in equation (62). qual, butifnot, & mean value
As already indicated by relation (43), k, and « i i
y Kg ; must obey certain rules. If x, is
kept fixed and x; allowed to vary a discontinuity in x,,(+ o) exists if x; = x, an(ai a

discontinuity in x,(+ c0) appears when k; = N, 1, —N,+ 1. This suggests that in order '

to obtain positive solutions of both k,, and x,, x; must be confined to the interval

K, < Ky < N;k,—N,+1 (63)
or for a given x; the possible values of k¥, must be confined to the interval

In either case, one discontinuity corresponds to no within-site scatter and the other to
no between-sites scatter. From the approximate formulae (48) and (49) explicit
expressions of the within and between-site scatter may be obtained.

N - l K. K 1
Ky - d a "y
TN Gk 63
. _ W=k, 1
b app N_[ Kn —K . (66)

For a frozen k, a discontinuity in x =K i
continuity for r:b app takes placeywhellwxzp;%s?i?.r ° whem 1 =t however, the dis
The estimates of the within- and between-sites scatter obtained from equation (65)
and (66) have been compared, for different values of x, and x, with those based on
solutions of equation (62). For instance, for the fixed values x, = 10 and N, = 5, «; is
acco.rdu_lg to }'elation (63) restricted to the interval (10, 46). Near the jlowe; éis-'
continuity point (x;, = 11) x, and x,,,, agree very well (to within 0-1), but the

ey e e——r | ot et

i
v

3

» equations (39) and (42).

deviation (K app) inCreases rapidly towards the upper discontinuity point and becomes
6 for x, = 30 and over a 1000 when k; = 45. The two disregarded solutions of xy, in
equation (62) both remain almost constant and close to zero (—1-8 and 0-61). The
deviation between ., and K, ,p, on the other hand is less extensive and increases
towards the lower discontinuity point, where it is about 8 for x, = 11. .

The above method of estimating x,, and x, will be referred to as the ¢ Overall
dispersion * method to distinguish it from the ¢ Circular Standard Deviation’ method.
By this procedure an estimate of x,, is obtained from the following equation

K, = 6561/065> (053 in degrees) ()

here Bg52 symbolizes the mean square of the circular standard deviation of sample

. means in the studied sites. Either equation (39) or (42) may then be used to complete

the analysis. In principle the latter corresponds to the ¢ Successive method ’ introduced

.{ by Sanver (1968).

8. Examples

A statistical program developed by Gidskehaug (1975) makes use of the above
theory. On the basis of stable specimen directions it estimates the overall distribution
of remanent magnetization in the rock formation concerned with unit weight on
specimens, samples and sites respectively. Further it optionally produces computer
graphs of the observed distributions at the same three levels, prints tables suitable for
Goodness of Fit tests and finally carries out analysis of dispersion. ‘

Table 2 shows the analysis of dispersion summary table, which includes the value
of the F-statistic and the related degrees of freedom. Then follow the number of rock
samples (N) and sites (B) dealt with. The estimates of x, and x;, found previously by
equation (12), are required in connection with the Overall dispersion and Circular
standard deviation methods. Equations (59) and (60) form the basis for the Mean"
square method of estimating the within x,, and between-sites scatter x,, equations (67)
and (39) for the Circular standard deviation method and equations (39) and (42) for
the Overall dispersion method. In each case the estimated dispersion of means of
sample means k,,, and means of site means k., originate from equations (45) and ",
while the circular standard deviation (Sg3) and the 95 per cent confidence -circles
(Ays) are derived from equations (5) and (6) respectively (note that the precise formula
(4) has to be used for low precision parameters). For comparison the program uses
the derived values of k,, and k, to recalculate the statistics k, and k, by means of
The agreement of k, estimated on the basis of the Mean
square method with the overall dispersion of sample means determined more directly
by means of equation (12) gives some confidence in the new set of formulae. In case
of the Overall dispersion method, k, and k; naturally become equal to the corres-

* ponding initial values, while generally only one of the two quantities agrees exactly in
" the Circular standard deviation method depending on whether equation (39) or (42)

‘

is used to estimate x,,. _
Analyses of dispersion carried out on palacomagnetic results from the Kaoko
Lavas in South-West Africa (Gidskehaug et al. 1975) are presented in Table 2. The
input includes stable remanent magnetization directions from a total of 118 rock
samples collected from 40 sites. The size 3-77 of the test variable F with the listed

~ degrees of freedom suggests that a between-site effect does exist. :

' the three methods and the smallest value y,
~ circular standard deviation is smaller than one

3

In this example the Overall Dispersion method yields the biggest estimate of «,, of
but the difference in the corresponding
degree. Finally the confidence circles
Ags of the mean of sample means agree exactly (with an accuracy of at least two
decimals) while the estimated uncertainties of the mean of sites means deviate from

§ each other by about 0-1 degrees.



Table 2
Analysis of dispersion of palacomagnetic results from the Kaoko lavas in South-West Africa,

Mean
square
0-02585
0-00687

Sum of
Freedom square

Degree of

Source

2:0162
1-0710

78
156

Between sites

Within sites

3+77 with 78 and 156 df

F=

ka = 3790 k = 53-26

118 B =40

N =

Overall dispersion method

ke =

Circular sd. method

Mean square method

87:69 Ss; = 8-65

=9-10

Ses

79-25
7356

kw =

Sg; =9-49
SGJ

72-83

kv =

Within-site dispersion:

67-52 Sg3 = 9-86

kb-_-

Ss; =9-44

kb=

9:05

80-12

ky =

Between-site dispersion:

Overall dispersion of sample means:

53-26
ko = 4355:06  Aos

k1=

55-61

kx =
kma = 4355406

57-96
4355:07 Ags

k‘ =
kma

Overall dispersion of site means:

2-12

A95 = 2-12

Ass

-12

Dispersion of means of sample means:

= 3-06

ASS

2:99 Kt = 209121

= 2185-59

kml

2-93

2279-34 Agg

krnl

Dispersion of means of site means:

“
i
i
i
t

!

9. Discussion
Creer (1962a) and Irving (1964) discuss various sources that might contribute to .

! the scatter of the remanent magnetization in rocks. In general, experimental errors due
' to orientation and measurement in addition to inhomogeneity and anisotropy of

magnetization will contribute to the within-site scatter. Further, the between-sites
dispersion may in part result from tectonic tilting, but when allowing for this effect,
. the remaining scatter is often attributed to the palaeosecular variation of the Earth’s
magnetic field. The secular variation of the present geomagnetic field appears to be
latitude dependent (Creer 1962a; Cox 1970). Assuming the same to apply in the geo-
logical past, then x;, or the corresponding circular standard deviation f¢, serves as a
measure of the amount of secular variation at a particular palacolatitude. The
procedure requires that the true mean of stable remanent magnetization within a site
consists of a spot reading or has been acquired at a relatively short interval of time,
while the time spread between sites extends sufficiently long to record the secular
effect. A pile of lava flows could originally meet these requirements, However,
remagnetization or the acquisition of stable secondary components could easily

i
i

i

1

t

i
i

!

overprint a primary between-sites effect. In this connection Storetvedt (1968) claims
that a VRM built up over a long time at moderate temperatures could replace the
original remanence such that a site records the secular variation and its mean represent
an axial dipole field. Disregarding polar wandering and tectonic tilting one would-
under these circumstances expect no betweens-sites scatter or x, > K., thus allowing the -
" hypothesis to be tested by analysis of dispersion. Precaution must, however, be taken
to ensure that a sufficiently long time is involved, since the condition xy > ¥y could
also arise primarily from a rapidly erupted sequence of flows.

Equation (42) and the corresponding approximate formula (49) show that the
sampling distribution of site mean directions mask the true between-sites scatter x,
since the precision parameter x; depends also on the within-site scatter ., resulting in

i Kk, < Ky, For this reason an estimate of r; should not be used as a measure of the

between-sites scatter. Despite this the observed overall scatter of site means k; has
' frequently been used to estimate the palaeosecular variation (x,). This was the case
- with most of the palacomagnetic results used by Brock (1971) to test the various
! models (Creer, Irving & Nairn 1959; Creer 1962a; Irving & Ward 1964; Cox 1970) -

' for secular variation of the Earth’s magnetic field. Generally, k; will result in an
overestimation of x,. However, when N, k,, > K, (see equation(49)) x; will approach
k, and the assumptions made by Creer (1962a, 1962b) apply.

This paper describes three different methods to isolate or to estimate the between-
sites scatter x,. The formulae used to obtain the results in Table 2 (see Section 8), will
be referred to as ¢ exact’ to distinguish them from the approximate equations (61),

. (48) and (49). The statistical program has the ability to carry out analysis of dispersion

; also by the latter. As expected, due to the high precision of the remanent magneti-

zation in the Kaoko lavas, the different procedures in this case agree very well. A

replacement of equation (60) by (61) in the Mean square method reduces the estimated

between-sites scatter to k, = 77-4 or Sg3 = 9-2 as quoted by Gidskehaug et al.

! (1975). Frequently, the estimates k, and k; of the overall dispersion of sample means
and site means, respectively, are quoted in palacomagnetic papers and thus supply the

¢ main information to estimate the within- and between-sites scatter by means of '
equations (65) and (66). With respect to the Overall dispersion method the deviation
between ky, and ky, o, does not simply depend on the absolute values of &, and k; but

also of their relative configuration as discussed at the end of Section 7.

The estimated Fisherian statistics apply only if a studied population conforms to a

\  Fisherian distribution. This may be tested by a Goodnes of fit test (Watson & Irving
1957). The assumption made to deduce equation (39) are given by the equations (34),

» (35) and (36) in addition to the requirement that the random vectors e, and §; must

i



DE Inaepe i
B tgeﬁilxeggfzgléoth;g The same assumptions underlie the statistical induction
implics thet a2 within-site scatter in the analysis of dispersion. Equation (34';
distributed wib T é) te mean py;, randomly chosen from a site, must be Fisherian
in dispersion Hart]es ,asnt precision parameter k,,. To test the B sites for homogeneity
& Hartloy 19,7 0 Prg’f méllxlmum -ratio test may be applied (Watson 1956; Pearson
be emual for all. e erz:q ; t}I,; also the number of: rock-samples N ;used ina si’te should
betwaon. the varie . . ough not proved, it is believed that a good agreement
assumptions home tn];et ods to estimate «,, and x, indicates that the underlying
distribaton o rl;ol een severely \{lolated. In case of the Kaoko lavas the overa!
(Gidskehang et o1 fg;sgnear¥h and site means cpnform to a Fisherian distributioﬁ
effoct docs S a;xd the.estim:t é’;—t;itt (see Section 6) indicates that a between—site;
vari;?ign _since tectonic tilting could bevlygesg;zge seatter K, was attributed to secu
Fishelrsiaincailil;t :}ggt_Gaq531ar} statistics have many points of resemblance While 2
normal iy lon 1s uniquely defined by means of the two parameters. dx,2
istribution is likewise defined by a true mean value iand a valrli::ceka,;

where for tightly-grouped distributi
re ut i
precision parametsr (B Tamp 1ons the latter corresponds to the reciprocal of the

6% = 1/k. (68)
B_y means of the above expression A
directly to similar equations in Gauss
betvyeen the probability density functi
the .mdependent variable z of the pro
bution symbolizes the deviation of a
Then by replacing § by z in equation

1an statistics. This is attributed to the relation
ons pf the two types of distributions, Suppose
bability density function g(2) of a normal distri-
random observation X from the.true means |
(1) we get for large value of x o

H@D=1fiz¢) = 2Qno?)tg(z) = (x/2m) 8(2).
tl_?.quatxon (69) show§ that the function value f
vllg{le:ﬂ fi(®) > g(2) ifx > 2m. Notice, howeve;,
I:or fhzurface (1)1f a unit sphere constitutes the domain of definition of f,
e ;:s;l wS elz‘ the ;ru; mean direction p is known in a Fisherian dils.tribution
_ ection 3 that the mean square @2 ‘I
[ o e i ' quare o of the vector e =p,—
%h - estzi;n;t cl)\i)hconstxtutes an unl_:nasgd estimator of 2/x (equationsn(.?;)a:nd 1()52);,
as a general application for Fisherian distributions for x > 3 For.

high values of the isi
the precision parameter we may i iti ima
the angular deviation 0, (in radians) between B z}a,r:cril :,d dition estimate i by means of

(2= g(2) when x = 1/6% = 27 and,
that g is defined for all real numbers

N —_—

2/k =3 02N =62, o

It is interesting to notice that @? (or 62
_ w? (or 63

radius ‘06;!.21 of the circle within wl(lich a

cent (similar to equation (5)) since

for large ) also estimates the
K square of th
n observation falls with probabilic%y 63-§ I pc:

0253.21 = Z/K = 20’2

Equation (71) shows that 6%,
value twice as large as the vari’a
(equation (68)).

For the case when I is unknown,

N —.1 is an unbiased estimator of the
unbiased estimator §2

(063'21 in radians)

(7

which is re :

nce o2 im f;l:e: to as the angular variance, has a:
orresponding normal distribution

we see from equations (25) and (71)

. that ¥°6,%/
tima f anzgglar variance 0%,.,,. This is similar ta the
€ variance ¢“ in a normal distribution

§2=§jd2/N I »
; - (TN

equations (48), (49), (59) and (51) transform

) |

|

e+ oo

e~

where d, symbolizes the deviation of a random observation X, from the sample mean

N
M =3 X,/N. Only when applied to a tightly-grouped Fisherian distribution (Jarge x)
formula (1) given by Cox (1970) constitutes an unbiased estimator of the angular
variance (2/x), because then the angular deviation becomes equal to the corresponding
vector deviation é,.

10. Conclusion

The domain of definition of the basic probability density function (1) of a Fisherian
distribution forms a unit sphere. An element in this domain may be referredtoina -
series of ways among which the vector error @, = (p;—n) or the vector deviation from
the true direction p is introduced in this paper. If a sample of N random observations
p; has been taken from a Fisherian distribution for which p is known, then twice the
reciprocal mean square of the vector errors makes an unbiased estimator of the
precision parameter k. This follows from the expectation E(w?) of the square of o,
deduced from equation (3) or w; marginal distribution of ¢ = cos 8. Further, the
expectation E(R),, o given by equation (33), where R symbolizes the scalar value of
the vector sum of the N unit vectors p;, conforms to the linear function (29) of N for
the whole range of k > 3 and for N values up to 3x. On these-assumptions an unbiased
estimator of « is derived also for the general case when p is unknown. The latter turned
out to be identical to the estimate of precision given by Fisher, while the formula (in
terms of vector deviation) for estimating the cotresponding angular variance is similar
to the unbiased estimate of variance in Gaussian statistics.

Based on the above information and a one way random effect vector model the
overall dispersion of sample means and site means are derived as functions of the
within- and between-sites scatter. These formulae, which take the curvature of the
sphere into account, transform for large precision parameters to the corresponding
formulae in Gaussian statistics by substituting x = 1/o2.

The analysis of dispersion on a sphere is generalized to include populations with
precision parameters (x,) down to about three and sample sizes (N) at least up to
three times the precision parameter. A new formula for the expectation of the mean
square between sites improves the Mean square method. In addition, the Circular
standard deviation method and Overall dispersion method of estimating the within-
and between-sites scatter are described.

Finally, formulae for the dispersion of the sampling distribution of means of
sample means and means of site means are used to estimate the uncertainty of overall
mean values. These provide a more general application of the theory of errors to

~ distributions of directions in space.
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An iterative array processor for two simultaneously arriving signals js
developed which gives estimates equal to the maximum likelihood esti-
mates. Using this processor, the array is first beamed on one of the two
events to produce a signal estimate which is then time-shifted and sub-
tracted from each of the original traces. The difference traces are then
beamed to produce a signal estimate for the second event. The estimate
for the second event is now shifted and subtracted from the original
traces, and the resulting difference traces are rebeamed on the first event.
The process is repeated until differences in successive signal estimates
for the desired event fall below a pre-determined threshold. In addition
to its use in processing two simultaneously arriving signals, the processor
can be of use for detection of secondary phases in the coda of an event.

Introduction

The most direct approach for separating two signals which arrive simultane
at a seismic array is to beam the array on each of the event epicentres. Unfortun
the simple beam does not always yield satisfactory signal estimates due to conta:
tion of one signal’s estimate by the other. Shumway & Dean (1968) and (

(1974), however, demonstrated that an asymptotic maximum-likelihood prox
yields better signal estimates than does simple beamforming. Cohen, using si
recorded at the Tonto Forest Seismic Observatory (T FO), found that the
attenuation obtained using a seven-element subarray and the mixed-signal proc
was comparable to that obtained using a 19-element subarray and the beam.

While the superiority of the mixed-signal processor has been established by
and other studies, for computational reasons it is not always practical -to us
maximum-likelihood approach. However, the iterative beamforming app
described here is similar in concept to simple beamforming, and it may be po:
to implement in operational systems with minimal investments in addit
programming.
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