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ABSTRACT

Eaton, G.P., 1984. The Miocene Great Basin of western North America as an extending back-arc region.
In: R.L. Carlson and K. Kobayashi (Editors), Geodynamics of Back-arc Regions. Tectonophysics, 102:

275-295.

A narrow continental volcanic arc has lain near the western margin of the North American continent
since mid-Miocene time. Its south end began retreating northward 18 m.y. ago. The active remnant of this
andesitic arc today is the Cascade Range of Oregon, Washington, and British Columbia.

A large part of the Great Basin and region to its north was situated throughout this period first
wholly, then partially, in a back-arc position relative to the arc. This region had, and still has, most of the
characteristics of back-arc regions elsewhere in the world—a thinned, faulted and extended crust and
lithosphere, limited development of a geophysical bilateral symmetry (a mid-to-late-Miocene symmetry
axis is marked by narrow swarms of basaltic dikes with associated positive linear magnetic anomalies that
are parallel to the contemporary trench), high heat flow, low Bouguer gravity and seismic wave velocity
values, notable seismic attenuation in the mantle, and a fault plane solution record dominated by
normal-fault mechanisms.

This back-arc region differs somewhat from most others (those composed of oceanic crust) because of
its continental setting and recent geologic history. Despite its name, the Great Basin stands high, nearly 2
km above sea level. This high elevation owes, in part, to the fact that extension and heating of the
continental lithosphere are still underway, though not as a back-arc phenomenon. The present litho-
spheric stretching results from oblique extension near the transform boundary of the North American
plate, the San Andreas fault system. The latest stretching has probably maintained the physical state of
the lithosphere first developed during back-arc spreading.

INTRODUCTION
History of investigation

More than a century of debate concerning the structure and origin of the Basin
and Range province has passed, most of it focused on the Great Basin, both because
of longer and more detailed geological and geophysical scrutiny there, and because
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The best documented record of early termination of calc-alkaline volcanism in the
Great Basin is found on its east side, near Marysville, Utah. It occurred there in the
period 22-24 m.y. For the rest of the region the record is less clear for the next 5
m.y., but by 17-18 m.y. ago, a well-defined, classically proportioned and continuous
andesitic volcanic arc lay along the western margin of the Great Basin, its axis

i Bimodal Basait
Calc-Alkallne and Rhyollte

. m—
——

13.7-0.004

kilometers

~
modified trom Eston (1979)

Fig. 2. Spatial distribution of calc-alkaline intermediate and bimodal (basaltic and high silica rhyolitic)
volcanic rocks in the western United States, 18 m.y. ago to the present. The calc-alkaline rocks define a
continental volcanic arc, the northern three-fifths of which constitute today’s active Cascade Range
volcanic chain. While the south end of this arc was retreating northward, bimodal activity migrated

outward only a short distance near the margins of the Basin and Range province (from Cross and Pilger,
1978; and Eaton, 1982).
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aligned along the California-Nevada border in the south and along the locus of the
Cascade range in the north (Fig. 2). Behind it lay a region of bimodal volcanisp,

(Fig. 2), some of it, e.g. the middle Miocene Columbia River basalts, of a tholeitjc

plateau or flood-like nature. The region behind this arc was characterized then 5
now by the emplacement of distributed normal faulting and by swarms of basaltic or
basaltic andesite dikes. The dikes that occupy the axis of the region display sharp,
stripe-like magnetic anomalies. Together, this is the evidence suggesting that the
Miocene Great Basin was an actively spreading back-arc region.

If lithospheric thinning underway in Miocene time has continued to the present,
changing only in rate, direction and aggregate degree, the basic physical state of the

crust and lithosphere may have been, at least to a crude first approximation, similay -

to what it is today. Following this argument, it will be instructive to examine the
present characteristics of the province, for they are gencrally in accord with those of
actively (or recently) spreading back-arc regions. They thus tend to support the fossi]
evidence for the Miocene and younger back-arc character of the region. One may
anticipate at the outset of such an examination that because the region has evolved
as continental crust and lithosphere, its attributes will display some degree of
contrast within those of oceanic crust and lithosphere deformed in the same manner.

PHYSICAL CHARACTERISTICS OF THE GREAT BASIN
Geophysical symmetry

The Great Basin displays a subtly developed geophysical and topographical
bilateral symmetry (Eaton, 1976; Eaton et al., 1978; Eaton, 1982). It is unlike that of
oceanic spreading ridges or back-arc basins in that its elements are those of long
wavelength (100 km and greater) gravity anomalies rather than short wavelength
(5-50 km) magnetic anomalies. The axis of this bilateral symmetry trends nearly
N-S (Eaton et al., 1978, figs. 3-8), but in the center of the region, at the
mid-latitudes of Nevada, there is a large gravity anomaly pair cocked counterclock-
wise to the general axis of regional symmetry, its pattern not unlike that of the wings
of a butterfly. The axis of this pair trends NNW, parallel to the arc and trench (Fig.
3). It appears to reflect an early stretching of the lithosphere. It is overprinted by a
younger, high-frequency gravity grain that does not participate in the symmetry.

Neither this older symmetry, nor that of the Great Basin as a whole, is reflected in
a symmetry of the surface or near-surface geology. The surface geology is the end
product of a very long and complex crustal history. It thus displays a significant
contrast with the generally much younger, monolithologic, and essentially homoge-
neous oceanic crust of rather simple history, a crust displaying detailed patterns of
magnetic stripes developed at its spreading ridges. Such magnetic stripes are much
more poorly developed in back-arc basins than at the ridges and this fact may also
explain their apparent scarcity in the Great Basin.
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Fig. 3. Gravity symmetry in the central Great Basin. Also shown on the index map (center) by heavy
parallel lines are the axes of discontinuous, linear magnetic highs. The latter are associated with exposed
basaltic dike swarms along the axis of Miocene back-arc spreading. The southernmost magnetic lineation
also appears on the actual gravity map. From Eaton et al. (1978) and Zietz (1982).

Since the strength of a magnetic field arising from a simple source configuration
decays approximately as the third power of the distance to its source, while the
gravity field decays as the square of that distance, magnetic data tend to emphasize
shallower features. The magnetic field over an area in which the geology reflects the
products of events spanning a range from Precambrian to Holocene time will be
highly complex in terms of pattern development, as well as pattern discrimination
and recognition. Despite this fact, there are two areas in the Miocene back-arc
region of the western U.S. that display prominent stripe-like, positive magnetic
anomalies not unlike those developed at oceanic ridges. One of these is in northern
Nevada and the other, in southeastern Washington (see heavy parallel lines in Fig.
3). Exposed swarms of basaltic or basaltic andesite dikes of middle Miocene age are
associated with both. Sub-parallel dikes of like nature are seen elsewhere in the
region, but do not have similar magnetic expression. The dike swarms and associated
magnetic anomalies described here are distinguished by their sharp and linearly
continuous character. They are co-linear with the axis of gravity symmetry in central
Nevada. They reflect an aborted continental extensional rift that was parallel to the
contemporary arc. It developed several hundreds of kilometers from the trench of
that time. Because the magma that nourished it was mantle-derived, the lithosphere
must have parted locally, but only to a degree equal to their aggregate width.

The crust of the Great Basin has not been “oceanized”, but it developed some of
the characteristics of what is generally referred to as “ transitional crust,” that which
we sense geophysically at a passive margin, the boundary between continental and
oceanic crust after lithospheric parting.
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Heat flow

High heat flow is a prime characteristic of back-arc basins. Watanabe et al. (1977)
proposed a general history for newly created back-arc basins, one in which the basin
lithosphere cools toward a steady state value of approximately 2.2 HFU and, with 5
thin lithosphere, a maintenance of that value for several tens of millions of years,
These investigators reported modal heat flow values of 2.5 HFU for the Plio.
Pleistocene Okinawa trough and Mio-Pliocene North Fiji basin and 2.0 HFU for the
Oligo-Miocene Shikoku and Parece Vela basins.

Average heat flow in the Great Basin today is 2.20 HFU. The mode is 2.15 HF U
(see Fig. 4A). Direct comparison of these values with those of marginal basins must
be made with caution, however, for radiogenic heat production in a potash-rich
continental crust has the potential for elevating observed heat flow values above
those typical of oceanic crust. To get around this problem, a comparison of reduced
heat flow values is advised. Reduced heat flow in the Great Basin (average value,
1.66 HFU) is greater than that of stable North America by as much as 50-100%
(Lachenbruch and Sass, 1978) and the warmer subregions within or near it, like
those at Battle Mountain, Nevada, at Long Valley, California and in and near the
Rio Grande rift in southern New Mexico, display reduced heat flow values that
exceed those of the stable craton by as much as 300%. It thus appears that the
anomalously high heat flow of the Basin and Range province is more likely a
reflection of crustal extension, groundwater convection, magmatic intrusion, and
possibly some local thermal refraction at basin-range boundaries, than of abnorm-
ally high crustal heat production.

Although the range of observed heat flow values in the Great Basin is high (from
0.4 to 4.8 HFU) and heat flow is sharply variable on a local scale owing to
convection and refraction, several attempts have been made to define regional
patterns and even to smooth and contour the data (Blackwell, 1978; Eaton et al.,
1978; Swanberg, in Sass et al., 1981). The results of the most comprehensive of these
efforts, one based on the silica geothermometry of groundwaters from several
thousands of wells, as opposed to thermal gradient measurements made in fewer
than 150 wells studied thus far, is shown in Fig. 4. One sees that a large central area
of the Miocene and younger back-arc region under discussion is characterized by a
heat flow of 2.5 HFU and that this value drops outward in all directions, falling to
as low as 1.5 HFU on the Colorado Plateaus to the east.

Most investigators (Blackwell, 1969; Sass et al., 1971; Roy et al., 1972;
Lachenbruch and Sass, 1977, 1978) agree that the anomalous heat loss in the Great
Basin is probably due to some form of mass transfer in the lithosphere (e.g., ductile
stretching, magmatic intrusion, volcanism or hydrothermal convection), but they
differ with one another in terms of the relative importance they attach to each of
these contrasting mechanisms. For example, Blackwell (1978) suggested that hydro-
thermal convection and plutonism-volcanism play the prime role in energy transfer
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ago .(Ph'ocene and Quaternary time), Following Blackwell’s (1978) reasoning, these
relations suggest a higher convective heat loss through magmatism while the Great
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unlikely that upper mantle velocities and heat flow would have been substantially
Jower then.

Seismic velocities in the crust also seem to be anomalous. It has been noted
elsewhere that the Great Basin crust is characterized nearly everywhere at levels no
deeper than one-third to one-half its total thickness by a zone of low compressional-
wave velocities and high electrical conductivity (Eaton, 1980). Comparison of
thirteen velocity profiles for the Great Basin crust with a reference profile in the
interior of the Colorado Plateaus (data extracted from Prodehl, 1979) reveals that
the upper, middle, and lower crust of the Great Basin have the following velocity
properties relative to those of the Colorado Plateaus: (1) the upper crust of the Great
Basin displays velocities that are generally less than (in a few localities they are equal
to) that of the upper crust of the Colorado Plateaus; (2) the middle crust has
velocities consistently lower than those of the Colorado Plateaus; and (3) the lower
crust displays a variety of values, the majority of which are lower than (but some of
which are greater than, and some equal to) those of the plateaus.

A mean of the velocity values calculated for rays traversing the crust perpendicu-
lar to its layering reveals that for seismic refraction lines originating at 28 shot-points
in the Great Basin, the average crustal velocity is 6.13 km/s. By contrast, those lines
originating at 9 shotpoints oufside the Great Basin (in the Colorado Plateaus, Middle
Rocky Mountains, Snake River Plain and Sierra Nevada range) show an average
value of 6.37 km/s (see i values in Prodehl, 1979, tables 2-53). That the lower
average seismic velocity in the crust of the Great Basin does not stem from its
sedimentary layers is confirmed by corrected values of reduced travel times at
critical distances utilizing P, travel times (Prodehl, 1979, p. 43).

The observed crustal velocity contrast between the Great Basin and its surround-
ings, 6.13 vs. 6.37 km/s, should give rise to a density contrast of approximately
—0.04/g cm ™3, A density contrast of like sign probably also exists in the mantle,
but as Eaton et al. (1978) have pointed out, a significant part of the —150 to —230
mGal gravity low that characterizes the Great Basin originates in the shallow crust.

Average Bouguer values over the Great Basin are nearly 100 mGal lower than

those for most of the rest of the Basin and Range province. This intraprovince
contrast is apparently due to lower Great Basin density values at all levels (upper,
middle and lower crust and upper mantle alike), for although Eaton et al. (1978)
noted the requirement of assigning part of the gravity anomaly source to the
uppermost 15 km of the crust, Prodehl (1979, pp. 24-25) observed that velocities in
the uppermost mantle of the Basin and Range Province are consistently higher than
8.0 km/s south of the southern edge of the Great Basin and consistently lower than
8.0 km/s within the Great Basin itself. Because the region to the south has been
inactive tectonically for much of the past 5-10 m.y. and has an appreciably lower
elevation (Eaton, 1979), this probably signifies early thermal subsidence, as well as
advanced erosion and the development of through-going drainage unimpeded by
continued uplift of the blocklike ranges.
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Basin was a back-arc region, than in the period since then. Perhaps the total heat
loss witnessed today represents a sum of the convective heat loss associated with
present day extensional tectonism and conductive heat loss associated with Miocene
lithospheric thinning and spreading. Whatever the case may be, it seems hard to
escape the conclusion that the Great Basin was a region of high heat flow during
Miocene time and that it thus had one of the dominant characteristics of active

back-arc regions.
Seismic structure of the crust and lithosphere

The crust of the Great Basin is everywhere less than 40 km thick. Locally, it is as
thin as 23 km and, in -at least one locality, it may be thinner than 20 km. Such
thicknesses contrast sharply with those of the Sierra Nevada range on the west and
the Colorado Plateaus on the east. There, thickness values everywhere exceed 40 km
and are more generally found to range from 40 to 50 km (Thompson and Burke,
1974; Smith 1978, fig.-6-2).

The thickness of the Great Basin lithosphere has been estimated to be 65 km
(Thompson and Burke, 1974). This is less than the worldwide average thickness for
continental lithosphere. It is roughly in proportion to the anomalous thickness of the
Great Basin crust relative to that of normal, continental cratonic crust. The
asthenosphere thus protrudes upward beneath the Great Basin.

Seismic velocities

In addition to anomalous crustal thickness and high heat flow, upper mantle
velocities beneath the Great Basin are anomalously low (7.4-7.9 km/s) relative to
those beneath the craton (8.0-8.2 km/s; Pakiser and Zietz, 1965; Herrin, 1969;
Prodehl, 1970, 1979; Thompson and Burke, 1974; and Smith,1978). Such P, values
are rarely found beneath continental crust (Japan and the Kurile Islands seem to be
an exception). Such values are suggestive of elevated upper mantle temperatures.

A recent compilation of P, data by Black and Braile (1982) revealed strong
inverse correlations between P, velocities and heat flow and between P, velocities
and estimated temperatures at the crust—mantle boundary. The empirical relation-
ships derived by .them fall well within a measured range of values based on
experimental studies of the effect of temperature on compressional wave velocity of
ultramafic rocks in the laboratory. An apparent correlation between heat flow on the
one hand and crustal “age” and lithospheric thickness on the other, led Black and
Braile (1982) to suggest that increases in lithospheric thickness and P, velocity are
mutually related processes, the result of cooling of the lithosphere following major
thermotectonic events. Inasmuch as crustal extension is still underway in the Great

Basin, we cannot attribute observed low P, values with any certainty to the back-arc
phase of spreading, but because the earlier episodes of extensional faulting appear to
have been somewhat more vigorous than those at present (Eaton, 1982), it seems
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1o 1o \ ack-arc regions elsewhere in th 1 . osphere so typical of
; __ region during the initial ph om(wQ d probably first developed in the Great Basin
- ases of intra-arc and back i
20- : £ 201 . been renewed and. th . ack-arc spreading and h i
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g 5. Crustal velocity sections for the Great Basin and a reference section in the Colorado Plateaus. Two
pes of vertical profiles characterize the Great Basin: (A) one in which there is a distinct low-velocity
yer in the Great Basin crust and (B) a continuously downward-increasing velocity profile that generally
imics the profile for the Colorado Plateaus, except for uniformly lower velocities and a thinner crust.
‘rom Prodehl, 1979).

Two velocity profiles from the Great Basin are shown in comparison to a
oference profile for the Colorado Plateau in Fig. 5. The data are based on the
aterpretations of Prodehl (1979). One profile represents a line running from the
levada Test Site, near Mercury, Nevada, to Kingman, Arizona, the other, an
ast—west line running from San Luis Obispo, California to Chinle, Arizona. The

irst profile (Fig. 5A) displays a low-velocity layer from a depth of 7-25 km, .
Jounded above and below by strong velocity gradients. The other (Fig. 5B) reveals a -

yrofile similar in general form to that for the Colorado Plateaus, but one where,
Sreat Basin velocities are lower at all levels above the base of the crust than those of
he plateaus. In both cases, the Great Basin crust is seen to be. thinner than that of
he plateaus.

The lower values of crustal seismic velocities in the Great Basin are probably
nore the result of mechanical and thermal effects, than of an inherent compositional
sontrast. Relatively elevated temperatures, a high degree of faulting and fracturing
ind elevated pore pressures (leading to reduced effective pressures) may all contrib-
ate to a lowering of seismic velocities. A moderately high fracture porosity would
reduce both seismic velocity and bulk density.

Macrofractures lower both ¥, and ¥V, and increase the ratio V,/V; in granitic
rocks, in situ (Moos and Zoback, 1983). There is a correlation between regions with
macrofractures and anomalously low observed seismic velocities. Velocity reductions
of these sorts are observed over a wide range of frequencies (10 Hz to 20 KHz), and
the presence of macrofractures is seen to be a controlling influence on the
velocity—depth function in granitic rocks.

Just how much of the observed velocity difference relates to conditions that

obtained at the time of back-arc spreading and how much followed from the most
R fslemnn nnnnnintad urhth tha arnwing trancform honndarvy is

: .S_o Farallon plate. Later (after

The hi :
%moacoa_ﬂmm\ of extensional deformation in the Great Basin has bee
Zoback et al Nwmww m~_., cﬂwth Eaton, 1979, 1982; Zoback and ,_,:oavmo% WMM:
. . It began as intra-arc s i : ’ :
calo. . 4 preading associated with j i
alc-alkaline volcanism and continued first as back-arc %Mnhﬁ“ M”M:“wa_mﬁ
en as

the 2<.o later phases being associated with
spreading changed notably as the transform
ystem) grew north-northwestward along the

ward (Fig. 6A), normal to the trench

e , the oxﬁoa._mmos being related to subduction of .
m.y. ago), it was reoriented west-northwest, in

oblique transform-related extension
¢ plate.

8:8.:»:8 11:.. the change from back-arc to
associated with northwest passage of the Pacifi
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Farallon—-North American plate convergence

Because it is the back-arc phase of nxﬁsmﬁb i:r.iEor we are oo_._omﬂwmmr““w _M.
instructive to examine the chronologic —,m_w:osm. of .v_w:w intera er s
BN. Won _Mnmdo that includes this phase. Two recent vccrom:ozw have »QWmeMGmNV
o ,. ract of Engebretson et al .
mm..éo, o _uwvnnm AMBOM“MM “Mwmmwmv Nﬂwn” M”“w that D.o:m late Mesozoic through
MMWWMMV“MN_ :_n.sn (specifically, from 135 to 43 m.y. mmo_v_, :.6 rate MM oMMMM.mMMH
i erally increased,
e 25 mmn&__.o“v M:w:wﬂmwﬂﬂ»“ omﬂ .Mwwp\a“hm M_”m :o”& earlier, :.5 first well
o o sion in the Cordillera took place 51 m.y. ago, In :.o:ro_.s
aog:..n::& %”woaiwm a time of near-peak convergence rates. The extension iwm
e 1 t Mmmosw_ in nature, as convergence was oblique. At 42-43 m.y., Hﬁom
g 5.Em : vergence between the two plates dropped sharply .8 less than )
e 3_2.20 mou a.m to Engebretson et al. (1982), it dropped still ?:rﬁ. m,~ 3
&5 e wwmzwm roughly 37 m.y. ago when the earliest, well documented
oxter mu om. nﬂ_rs\mu“._“nﬁ Basin began. The onset of this extension followed by only 5
ox%:d”” M”a oom transcurrent movement on the proto-San >a=w8mw _.Mﬁp“p vm__“w
oo inni i rmal, as opposed to obhque,
A MO ”M:@MM_MMV_W m:w_.mw“_mquMM M%oﬂﬁ.umno oﬁgmwws were thus 5:.?8& wﬁﬂ
MOMMWM-MOM»M»M”« aa,ncibm. rates of plate convergence. Plate-plate coupling ha
v.nocw.zw WMM-.pmm thMMMMMmMM_MMM«.OSQw also suggests (the details are ,:o., Eo&%a “
i H—._.n n.w one must examine their original figure) that the rate of relative Borwn.w
“&M_W: w:o North go&ows plate and the hot spot H.mma_.oboo frame dropped at
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m.y. ago to levels it had known only prior to 125 m.y. ago. It suggests, in addition
that the age of the Farallon plate being subducted beneath North America at th
latitude of the southern Great Basin had reached a near-minimum, 5-7 m.y., old. 1
must have been relatively thin and of low density owing to its youth and still-hig}
temperature, It is doubtful that it had much rigidity throughout that reach.close t
the trench and perhaps it was this characteristic as much as any that reduced the
strength of plate-plate coupling.

Figure 7 reveals no sign of a new convergence rate phenomena associated with
events in the critical period 22-18 m.y., the time in which the calc-alkaline volcanic
arc shrank geographically from a cluster of widely distributed, broad volcanic
centers to the well-proportioned arc seen in Fig. 2. Nor are there any events of note
during this period in the record of North American-hot spot reference frame
convergence. The abrupt narrowing and increased coherence of the continental
volcanic arc would thus appear to be a product of something other than change in
the absolute or relative motion of the North American Emﬁn. Perhaps it reflects a
stabilization of the distance of the spreading ocean ridge from the trench, a
phenomenon that would have the effect of stabilizing the age of the oceanic

lithosphere at the trench and, as a result, a fixation of the zone of magma generation
in the subducting slab, was responsible.

Evidence from the arc

In attempting to quantify evidence for transgression and regression of subduc-
tion-related calc-alkaline magmatism in. the southwestern United States, Coney and
Reynolds (1977). made the mmmcanaoug:m..ﬁ the magmas had been generated at a
more or less fixed depth on (or in) the subducting Farallon plate. In their model, the
distance of magmatic activity from the trench is used to calculate the dip of the
down-going plate. They interpreted the record as reflecting a flattening of dip from
80 to 50 m.y., a period of decreasing age of the oceanic lithosphere at the trench and
consequently an increasing buoyancy for the downgoing slab It was followed by a
steepening after 40 m.y. The time-distance plot of part of Coney and Reynolds’
compilation is shown in Fig. 8A, where the data have been replotted at a different
scale and enclosed by a new bounding envelope. Also shown are similar data for a
large region to the south (Fig. 8B). Both data sets as rendered here are limited to the
last 50 m.y. of the geologic record, the time from latest Laramide orogeny to the
present. The horizontal lines drawn across both diagrams identify the period 22-18
m.y., the time of development of the narrowed continental volcanic arc on the west
side of the Great Basin. Over a wide range of latitudes south of the Great Basin, a
west-southwestward component of seeming regression of the eastern margin of the
volcanic arc was underway. At the latitudes of northern Mexico (Fig. 8B), it was a
phase of very rapid regression in the period 22-18 m.y. and at the latitudes of the

southwestern United States (Fig. 8A), the trenchward retreat of the eastern margin
of the arc abpears to have heen accelerating ranidly Farthar nacth ae oln Tasio .
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ange was evolving. From 44 to

e e e s wrﬁwaa_“o“ MO“.MMW MM_“MM“MM:M”SWm:opoasm mo_.o.mw the entire
e Grot w»mmi was advancing southward (Cross and Pilger, 1978).
N .:5 quﬁ tern edge migrated west-southwestward from 41 to N.N B.vw
r:rwcm& e o inwr t part equivalent to the bounding envelope on So.:mf M
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followed a significant shoaling with which the compressional stresses of the
Sevier-Laramide orogenies were associated (Coney and Reynolds, 1977; Dickinson
and Snyder, 1978; Lipman, 1980; Eaton, 1982).

Re-examination of these data, especially the more recently published compilation
of Fig. 8B, suggests that this inte

rpretation may be incorrect. The average slope of
the “regressive” limb of the bounding curve in Fig. 8B suggests an extremely rapid
retreat. If, as Coney and Reynolds (1977) maintained, this represents a westward
retreat of a zone of magma generation at a depth of 150 km or so on the Farallon

plate, then the angular rate of downward rotation of the plate would have had a
value improbably high for a young and buoyant Farallon plate under the influence

of a gravity-driven torque, even at anomalously elevated temperatures in the
asthenosphere.

If the supposed regression in Fig. 8 is not an expression of a steepening of the
subducting Farallon plate, what might it reflect? The data for Mexico (Fig. 8B)
suggest that the waning phase of calc-alkaline volcanism was nearly synchronous
across the region and that it “flamed-out” nearly everywhere at approximately the
same time. An alternative interpretation of these data is that they reflect a singular
convective overturn of the mantle, a buoyant rise and horizontal spreading of a
thermal diapir of the sort defined by the model of Toksoz and Hsuj (1978). Such a
diapir might spread laterally beneath the base of the lithosphere, driving lithospheric
extension in the process, finally dying at the same time nearly everywhere as it
cooled by conductive and convective heat loss.

A diapir of this sort is created only after a long period of subduction, e.g. 25 my.
or more, but the history of continuous subduction of the Farallon plate beneath
western North America in Mesozoic and Cenozoic time is far more than adequate,

regardless of whether convergence was oblique or normal. The problem with this

hypothesis is that by 40 m.y. ago the dip of the Farallon plate apparently was much
lower than the one modelled by Toksoz and Hsui (1978) and, in consequence, the
diapiry if one was actually created in this manner by hydrodynamically-
convection in the asthenosphere, should have risen much farther inland
alternative, then, does not appear to help us with the dilemma posed

observational data. Perhaps the source region of the downgoing slab beca
depleted or spent, incapable of further
was the locus of their origin,

forced
. This
by the

me fully
production of intermediate magmas, if that

The abrupt westward displacement and narrowing of the volcanic arc at the
latitudes of the Great Basin might be thought to represent some form of arc jump.
Perhaps it was associated with a new phase of subduction

, one involving a different
part of the Farallon plate, one plun

ging downward at a steeper dip, the cause
unexplained. If this were the case, however, it is unreflected in the record of relative
plate convergence (Fig. 7). More troubling, it would have necessarily involved a
young, buoyant downgoing slab, a seemingly unlikely candidate for steep subduc-
:o:.éo»na,rcm_o:i&momBan.;m:r%Js::‘S_;:.;._:.L;r
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. The arc narrowed between 22 and 18 m.y., nwooE. The latter have probably undergone some degree of modification during late
happened appear 1o be unassailable. .a from one of intra-arc spreading to one of A .:Bo, though. Because later events were of a qualitatively similar nature, however, i
transforming the region of the Great Basin fro ied by a relative lull in volcanism in . 1s suggested that they did not alter the geophysical record in any fundamental way
back-arc spreading. The o:»:m.o was moooBv.wEn@n M: but may, instead, have actually enhanced it. Thus we see preserved in the geophysi.
the Great Basin, after which bimodal <o_omEmBO Mp w.mw.E and the region west of it cal record evidence of crustal spreading about a middle Miocene axis of symmetry
Much of the crust of the western part of EM ~”~n_, lates, some far-travelled from = This axis is marked by a major swarm of basaltic dikes and, in the south, by a
is believed 1o represent accreted ?mmn..o:a AM M MEM :E,o h of which preceded the ‘ .Soao_.ma degree of gravity symmetry. The crust and lithosphere are thin, heat flow
their locus of origin. Their transportation an oomn 8. have exerted an effect on the 18 E.S:S_o:mq high, and upper mantle and crustal seismic wave velocities are
extensional episodes described here, does :.9 appe relatively low. m.iao:oo of Oligocene and Miocene normal faulting, the resultant
extensional structures or its related volcanism. structures trending northwest and preserved in the interior of today’s uplifted,
north-northeast-trending ranges, reveals the direction of an associated minimum
principal stress that was orthogonal to the arc and trench of that time,
SUMMARY t
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