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Membrane Tectonics
D. L. Turcotte*

(Received 1973 June 21)

Sunnnary

Due to the ellipticity of the Earth the Lithosphere must deform when its
latitude changes. In this paper we approximate the lithosphere with an
equivalent spherical dome and determine the membrane stresses associated
with this defqrmation. Stresses of the order of kilobars are found
Stresses of this magnitude may result in propagating fractures in the
lithosphere. Ocean island chains and graben valleys may be the result of
such propagating fractures.

Introduction

The basic hypothesis of plate tectonics is that the outer shell of the Earth (the
lithosphere) is broken up into a number of rigid plates which are in relative motion
with respect to each other. If the Earth was a perfect sphere these surface plates
would be free to slide about without deformation. However, to a good aopro‘(imgti on
the Earth is an oblate spheroid with an ellipticity ¢ = 0-00335. Due to ‘the équatoriai
bulge any change in latitude requires a deformation of the surface plaie. A plate
moving away from the equator will have its principal radii of curvature iﬁc.reased A
plate moving towards the equator will have its principal radii of curvaturé decreas.ed
It hag been s_hown by Turcotte & Oxburgh (1973) that the magnitude of the stresses:
assoqlated with a change in latitude may be sufficient to fracture the surface plates

Since the rigid surface plates are thin (50-75km thick) compared with the ra,d:'us
of the Earth they will behave like thin shells when deformed. Bending stresses canlbe
neglected compared with the membrane stresses. If the radii of curvature of an
unstressefl thin shell are increased the edge will be in tension and thz interior in
compression. If the radii of curvature are decieased the edge will be in com i
and the interior will be in tension. pression

- The surface plates move with velocities in the range 1-10¢c
significant change of latitude requires about 10® yr. Angimportarl'ﬁif.l/(zﬁ:;ioflhizr':v%erte}; ?
the surface plates will behave as an elastic medium on this long time scale. If last?c
yielding occurs, the membrane stresses will be relieved. Certainly, at moc;xest ge ths
in the plates the temperatures will be sufficiently high for plas’tic yielding tap be
cxpecte_d. ngever, to relieve the membrane stresses plastic flow must occur across
the entire thlckl}ess of the plates. There is no evidence that the cold, brittle near
;:Stac;ey s€OCkS ixeld plllastil;:all)l' on geological time scales. The presen’ce of major
ems shows that brittle fr. seur i
ettt wor st ooy actures occur when displacements of the order of

There is also observational evidence that the interior of the surface plates fracture
under.tenswn. Structural and petrological studies of the Hawaiian Isla;lds (:l-ack
& Wright 1970; Green 1971) indicate that they are a result of magma flows t};ro's'oﬁ
a8 propagating tensional fracture. Graben structures such as the Rhine Valiey uagre

* Present address: i ien ; .
New York 14850, ss: Department of Geological Scienices, Kimball Hall, Cornell University, Ithaca,
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also, apparently, the result of tensional fractures of the surface plate with finite

extension (Illies 1970).
It is the purpose of this paper to determine the magnitude and distribution of
membrane stresses due to the change in latitude of a surface plate. The associated

gravity anomalies will also be determined.

The sphereid

The accepted form of the spheroid (Wilkins 1965) has an equatorial radius

a = 6378-160km and an ellipticity & = 0:0033529. The two principal radii of

curvature at any point on the spheroid are given by (Bomford 1952)
a(l —¢)?

(cos? y+ [1 —e}? sin? y)} (1

P

a

" (cos? y+ [l —¢]}*sin® p)* @

where y is the latitude of the point. The radius of curvature p is the radius of the circle

tangent to the spheroid along a meridian of longitude The radius of curvature v is

the radius of the circle tangent to the spheroid along a parallel of latitude. At the

equator (y = 0) the radii of curvature are p = a(l —g)? = 6335-46km and v =a.
At the poles (y = n/2) the radii of curvature are equal and

p=v=af(l—¢)=6399-62km.

The radii of curvature of the spheroid as a function of latitude are given in Fig. 1.

The model

Each element of a surface plate is formed with radii of curvature corresponding to
the radii of curvature of the point on the spheroid where that element of the plate

€.400

€,375

v, p, R

6,350

6.325 1 1 L ' 1 s i s
0 30 60 90

Fic. 1. The principal radii of curvature of the Earth as a function of latitude.
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R+AR

o

L

FIG. 2. Cross-section of the spherical dome showing the original and deformed
positions. The radius of the dome is increased R to R+ AR, the centre is displaced
downwards a distance 9.

is formed. When the latitude of the element changes, the radii of curvature of the
element must change to correspond to the radii of curvature at the new point on the
spheroid. The resultant deformation of the plate leads to membrane stresses in the
plate.

Since the surface plates have irregular shapes and different elements of each plate
are formed at different latitudes, a determination of the membrane stresses can be
a very complex problem. For this reason we introduce a simplified model.

We will consider a circular segment of a spherical shell, i.e. a spherical dome.
Initially the spherical dome has a radius R and is unstressed. We assume that the
shell is deformed into a spherical dome with a slightly larger (or smaller) radius of
curvature R+ AR. The deformation takes place because of a radial surface force
(pressure) on the shell. Both the surface force, p;, and the radial deformation, w, are
taken to be positive outwards and negative inwards.

The deformation of the shell is based on a co-ordinate system centred at the centre
of the undeformed spherical shell as shown in Fig. 2. Because of the symmetry both
the applied surface force and the deformations as well as the stresses are only functions
of the angle ¢. After deformation to a spherical dome with a slightly larger radius
the centre of the deformed shell is assumed to be displaced a distance d. The position
of the deformed shell is given by

[(R+w)sin ¢]> + [(R+w)cos § +5]2 = (R+AR)? 3)
as illustrated in Fig. 2. Assuming that AR/R < 1 and §/R < 1 we find that
w = AR—0cos ¢. 4

We will show that the membrane stresses are a function of AR but not of 4.

Formulation of the problem

cfosmce _the thickness of the spherical d_ome is _small compared with its radius .the
19591’)mat10n.of the shell can be determined using membra11e theory (Novozhilov
(mem-bBendmg stresses can be neglected compared with the tension and compression
meridi rane stresses) in the shell. The stress in ’Ehg she_ll in the _d!rectlon of the

1aus is g, and the stress normal to the meridians is o, (positive stresses are
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Pr % (@ (b}

O’e 0'6

ot &K

F1G. 3. (a) Force balance on a segment of the spherical dome. (b) Deformation of
a segment of the spherical dome.

tensions, negative compressions). Because of the symmetry of the loading and defor-
mation there are no shear stresses in these directions. The equilibrium conditions
on an element of the shell require that

R
0'¢+0'9 = —Fpr (5)
d . _ 6
E (sin poy) = cos Yoy (6)

where 4 is the thickness of the shell. The force balance is illustrated in Fig. 3(a).
Using Hooke’s law the displacements in the radial direction w (positive outward)
and in the meridianal direction v (positive for increasing ¢) are related to the stresses

by

R
veotdp+w = 3 (6g—v0y) O
dv R
7 +w= yi (65— V0p) 8
where E is Young’s modulus and v is Poisson’s ratio. The displacements are illustrated

in Fig. 3(b).
We assume that there is no load on the edge of the shell. This requires that the

boundary condition
g, =0 at ¢ =0 ©)

be satisfied.

Combining equation (5)-(8) gives a single equation for the surface force in terms '

of the radial displacement, the result is

d*p dp Eh (d*w dw
—=r (1= = | — - . 0
i +cot¢ b +(1—=v)p; Rz (d¢2 +cot¢ i +2w) (10)
Substitution of the radial displacement from equation (4) gives

d’p, dp, ERAR

The solution of this equation gives the distribution of surface force required to deform
a spherical dome of radius R into a spherical dome with a slightly larger (smaller)

radius R+dR. Introducin;

D =prh+'

reduces equation (11) to a

(¢-1

which is Legendre’s equatic

where P,() is the Legendre
Q,_(E), the Legendre functic
itissingularforé =1, ¢ =
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radius R+dR. Introducing

2EhAR
Pr =P+ m, § =cosg, v=1-a(l+a) (12)
reduces equation (11) to a homogeneous equation
d? Prn dp,,
— rl 2v T — — 13
E= D= +2 - —ala+Dpy = 0 (13)
which is Legendre’s equation. The solution for the surface force is therefore given by
2ERAR
= . P 14
P = Ry H AR (14

where P,(¢) is the Legendre function of the first kind of order a. The second solution
Q.(%), the Legendre function of the second kind of order «, must be discarded since
it is singular for ¢ = 1, @ = 0. The constant A4 is to be evaluated from the boundary
condition, equation (9). With a specific exception which we will consider, the
Legendre functions of non-integer order are not readily evaluated.

Shallow shell approximation

If ¢4 is small a solution of equation (11) can be obtained by expanding in powers
of ¢. This is equivalent to the shallow shell approximation in thin shell theory

(Reissner 1946). The solution of equation (11) which satisfies the boundary condition
equation (9) gives '

_ hEAR

P = o (6166 (15)

0 = TR 7= 0?) (16)
A

7o = T (307, an

These results are correct to order ¢,°.

For positive AR the radial surface force is inward for ¢ < o//2, the radial
surface force is outward for ¢ > ¢ > ¢o/./2. The interior of the shell, ¢ < ¢/./3,
'S In compression. For o > ¢ > ¢o//3 the tangential stress g, is a tension. The
Maximum stress is the tension at the edge of the shell which is given by

EAR
4R
In ‘h§ shallow shell approximation the stresses and surface force are independent

of Poisson’s ratio. Before applying these results to the Earth’s lithosphere we will

stlter.mine the applicability of the approximation by comparing the results with a
Olution valid for arbitrary ¢,,.

$o . (18)

(09)¢ =¢o

Solution for Poisson’s ratio equal to 1 /4

oﬁsor V= } we find from equation (12) that « = 4. In this case an analytic solution
ma(ie Problem can be obtained for any value of ¢,. Taking v = } is a good approxi-
on for the Earth’s lithosphere since seismic studies (Bullen & Haddon 1967)
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show that v = 0-217 in the upper mantle below the Moho. The Legendre function
of the first kind for order } is given by

l—cos¢ |* l—cos¢ |* 19
rann-([2]) 1([Z52]) o
where E(k) and K (k) are the complete elliptic integrals of the first and second kind
nf2
E(k) = f (1—K? sin? 0¥ dat 20)
0
/2
K(k) = f (1—k%sin?a) ¥da. @)
]

Using the derivatives

dE 1 dK___l_( 1
w T ER T T\

E—K) 22)

the boundary condition, equation (9), can be satisfied with the result
hEAR S{2E(k)— K (%)}

Pe="3p2 8- 2008 §o) @
: (2+cot dpo)E(ko) — E(T—EE(LTKU(O)
2(1=cosd)

Ko ]
4
(2—cos ¢o)

%= 3R | T
[ (2+cotPg)E(ko)— —mK(ko) J

-+ cot $)E() — o 9)

2(1 -2 cot? P)E(k) — (=30056) ppy ]

(1—cos¢)

(2—cos ¢o)
2(1 —cos ¢g) Kko) j

_ ( l—c;osqb )4}’ ko = ( l—c;sqbo )i.

iptic i itz & Segun (1965)
Values of the complete elliptic integrals are tabulated by Abramowitz & Segun
: Again the max?mum stress is the tension at the edge of the shell and this is given by

29

(2+ cot? Ppg)E (ko) —

where

B (3+cos o) K(k
SEAR [ (3+4 cot? ¢o)E (ko) 2 =cosbo) (ko) 1 o
(0p)s=90 = 3R

2-cos o)
[ @+ cot? $o)E(ko) — —2((1—_°§S—¢°0—)K<ko) J
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This maximum stress is compared with the value given by the shallow shell approxi-
mation from equation (18) in Fig. 4. It is seen that the agreement is quite good even
for ¢, as large as 45°. In the remainder of this paper we assume that the shallow shell
approximation is adequate for geophysical predictions.

Fracture of the lithosphere

Although we have shown that the maximum stress occurs on the edge of the shell,
this is not a criteria for failure of the shell. Accepting the Mises-Hencky-Huber
criteria for failure (Nadai 1950), the shell will fail when

6%+ (g,— 04,)2 + 04,2 = 60,2 27N

where oy is the stress at which the material will fail in pure shear. Substitution of
equations (16) and (17) into equation (27) gives

EARG* \2 [ [ ¢ \* ¢ \2
1}(———) [7(—~) - (—) +1] = o2, (28)
8R $o $o °
Failure will occur when the left side of equation (28) becomes equal to o4%. Failure
will occur at the position on the shell where the left side of equation (28) is a maximum.
This is at ¢ = ¢, i.e. the edge of the shell. Therefore we conclude that the shell will
fail under tension on the edge if the radius of curvature is increased to a critical value.

In order to determine the membrane stresses in the lithosphere we approximate

the principal radii of curvature of the geoid as a function of latitude by a mean value
with the result

R =a(l1— ¢ +2¢esin?y). _ (29)

This mean radius of curvature of an equivalent, local spherical shell is compared with
the actual radii of curvature in Fig. 1.

We consider a circular shell with a radius of curvature equal to the mean value

at lhc_: equator, y = 0 in equation (29). The change in the radius of curvature as a
function of latitude is then given by

AR

= = 2¢ sinz'y. (30)

04r

03
(O’g)d):;p,,R

EAR
02

01

0 30 60
¢
Fic. 4, Dependence of the non-dimensional stress at the edge of the shell on the

$1Ze of the shell using the exact membrane theory (equation (26)) and the shallow
shell approximation (ecquation (18)).
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Substitution of equation (30) into equation (18) gives the maximum tensile stress in
the shell

(0a)g=go = 2E £y sin’ y. _ (31

Taking E = 1-72x 1012 dynes/cm? (Bullen & Haddon 1967) and & = 0-00335 the
stress is given as a function of latitude for several values of ¢, in Fig. 5. We conclude
that membrane stresses of the order of several kilobars can be caused by a change in
latitude of the lithosphere.

There is considerable uncertainty regarding the stress necessary to cause a fracture
of the lithosphere on geological time scales. Stresses on active fault zones are of the
order of 0-1kbar. The strength of mantle rocks in laboratory experiments is of the
order of 10 kbar. Membrane stresses of several kilobars may be sufficient to cause
propagating tensional fractures in the lithosphere.

Gravity anomalies

The radial surface force on the base of the lithosphere is due to the fluid-like
behaviour of the upper mantle. Prior to any deformation the stresses in the surface

plate are hydrostatic and the force on the base of the plate is equal to the weight of *

the plate. If the surface plate is deformed downward into the mantle the surface
force, p,, is positive. If the surface plate is deformed upward the surface force, p,, is
negative. Because of the fluid-like behaviour of the upper mantle it is appropriate to
relate the surface force, p,, to the deviation of the shell from the geoid, d, by the
hydrostatic relation

P = —ped. ()

When the shell is elevated above the geoid, d is positive. As long as d < w the above
analysis remains valid. It should be emphasized that d is the deviation of the surface
from the geoid and w is the deviation of the geoid from a sphere.

3t
2F
(UO)¢=¢°
K bars
1b
0
0

FiG. 5. Maximum stress in several equivalent circular lithospheric plates which
are created at the equator and move to a latitude y.
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The gravitational anomaly, Ag, associated with a deviation of the surface from the
geoid in the form of a spherical harmonic is

4n(n—-1)Gpd
Ag=—""__"7T"F7 33
£ n+1) 33)
where G is the gravitational constant and 7 is the degree of the spherical harmonic.
In order to estimate the gravity anomaly associated with membrane stresses we take
the limit # — co in equation (33) with the result

Ag = 27Gpd. (34)

Taking the value of the surface force given by the shallow shell theory Equation (15),
and the change in radius of curvature from equation (30) the predicted gravitational
anomaly from equations (32) and 34) is

2rhGEs

T sin? }’(¢2 —‘}‘Poz)- (35)

Ag =

The maximum value of the gravity anomaly is given by

nhGEe
ag

Ag = + $o®sin’y. (36)

Itis of interest to relate the maximum gravitational anomaly to the maximum tensile
stress, substitution of equation (31) into equation (36) gives

Ag = + 2nhG

(T)g =g, - (37

With % = 50 km gravity anomalies of the order of 10 mgal can be caused by membrane
stresses of the order of 2 kbar. This is the magnitude of observed gravity anomalies.

Conclusions

The analysis given in this paper shows that the membrane stresses in the lithosphere
due to the ellipticity of the Earth are of the order of kilobars. Stresses of this magni-
tude may be sufficient to fracture the lithosphere. Several authors (Jackson & Wright
1970; Green 1971) have proposed that a propagating fracture may be responsible
for the Hawaiian Island chain. There are many examples of such island chains in
the oceans and tensional fractures subsequently filled with magmas provide an
¢Xplanation for their origin. Rift valleys on the continents also appear to be the
fesult of tensional fractures of the lithosphere. Rift valleys display a finite extension
which can be explained as the extension required to relieve the membrane stresses
'n the Jithosphere.

~In considering the actual distribution of stresses in the lithosphere the analysis
&ven in this paper is only approximately valid. The surface plates are not circular
and the geoid js only approximated by a local spherical surface. Also, the lithosphere
s formed a¢ different latitudes so that the unstressed radii of curvature will vary over
'S surface, A large plate could have its radii of curvature increasing in part of the
Plate and decreasing elsewhere. Fractures could occur in surface plates due to stress
“ONcentrations or on zones of previous weakness such as a fault zone. Once started
*lress concentrations would occur at the tip of the fracture resulting in its propagation.
here are also other sources of stress in the lithosphere which must be added to
embrane stresses to determine the total stress pattern. Thermal stresses may

D'aty a significant role. Also, there are the stresses which drive the motion of the
es.

pla
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