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ABSTRACT

Ramberg, H., 1986. The stream function and Gauss’ principle of least constraint: two useful concepts for

structural geology. Tectonophysics, 131: 205-246.

To the extent that rock deformation can be approximated by a two-dimensional Newtonian model, a
powerful stream-function simulation method is applicable. The significance of stream functions is that
velocity, strain, stress and energy derived from the same stream function satisfy automatically three basic
conditions of dynamics: (1) the condition of continuity, (2) the Navier-Stokes equations, and (3)
conservation of energy. Hence we state with Jaeger: “If a stream function can be found which satisfies
the boundary conditions of a dynamic model the complete solution follows.™ All pertinent bits of
dynamic information are implied in the stream function from which they can be directly derived,
guaranteed—so to speak—not to violate the basic conditions of dynamics. Stream functions useful in
structural geology are solutions of:

4 4 4
V4‘P=§_‘P+2_a¢__+_a_‘£=o
ax4 ax?9y?r 3yt

A double-polynomial solution of max. degree 14 is developed, in which the coefficients are related
controlled by the V*y'=0 constraint, and their absolute values are determined by the boundary
conditions of specific models and by the condition of maximum rate of energy dissipation or maximum
rate of decline of potential energy. The polynomial stream function is applied to a collapsing viscous
“nappe” consisting of a thin basal layer with low viscosity on which a thicker laver with high viscosity
slides due to gravitational spreading. The velocity of forward movement depends upon absolute and
relative values of the following parameters: viscosity, thickness. the aspect ratio and density. The velocity
of a variety of nappes with different thicknesses, aspect ratios. viscosities and densities is determined.

INTRODUCTION

It is known that the mechanical behaviour of crystalline rocks is infinitely more
complex than that of Newtonian fluids; nevertheless, much insight into the evolu-
tion of deformation structures of rocks exposed to dynamothermal metamorphism
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may be gained from theoretical models in which rocks are treated as just Newtonian
fluids, albeit with an extremely high effective viscosity. 1 believe analyses based on
Newtonian models have considerably deepened our understanding of the dynamics
of folds and boudinage (Biot, 1959, 1961, 1963; Ramberg, 1968, 1981; Johnson,
1970; Fletcher, 1977; Smith, 1975), of salt- and gneiss domes (Biot and Ode, 1965;
Ramberg, op. cit.), of mantle diapirism and of thrust sheets (Elliott, 1976; Price,
1973; Ramberg, 1981) and not least of isostatic adjustment (Haskel, 1935; Critten-
den, 1963; Cathles, 1975; Ramberg, 1968; Artyushkov, 1971).

In this paper we shall continue to treat rocks as Newtonian bodies with high
effective viscosity when exposed to deviatory stress and the force of gravity in and
on the Earth’s crust.

The aim of the paper is to demonstrate how a well-known concept in fluid
dynamics—the Stream Function—can be combined with another well-known physi-
cal principle—Gauss’ Principle of Least Constraint—to give information on the
evolution of rock structures, including the velocity at which deformation structures
develop.

The special structure treated in the paper is a set of composite nappes with
dissimilar geometric dimensions and viscosities.

To apply the Stream Function Method it is first necessary to develop a general
solution of the biharmonic equation:
3%/3x* 4+ 20% /0x23y2 + 3% /0y =0
This is done in the section “A useful double-polynomial stream function”, p. 210. It
is further necessary to develop special solutions valid for the particular models
considered; in our case composite nappes. The development of special solutions is
treated in the section “Coefficient determination by the method of extremizing the
rate of energy change”, p. 216. Here it is shown how Gauss’ classic Principle of
Least Constraint (recast in the form of the Principle of Extreme Rate of Energy
Change) is used to determine arbitrary coefficients in the polynomial stream
function. Coefficients in the stream function valid for the double-layer nappe are
determined in the section “Simulation of a spreading composite nappe”, p. 218.

The most significant results from the numerical simulation of composite nappes
are the velocities and their relation to layer-thickness and length (aspect ratio), to
viscosity and viscosity ratio of the two layers as well as to their density. These
relationships are presented in the illustrations in Figs. 4-15, which actually contain
all pertinent information obtained by the simulation procedure. Readers not inter-
ested in the theoretical part of the paper may therefore find useful data concerning
nappe motion by studying the illustrations and their text.

THE STREAM FUNCTION METHOD

The assumption that rocks behave during regional metamorphism as extremely
viscous Newtonian fluids, combined with the knowledge that inertia is insignificant

for slow tectonic processes, enables us to apply a powerful stream-fufu

to the evolution of a number of deformation structures encountered in
Any two-dimensional motion can be described by a stream functio

1781; Rankin, 1864; Lamb, 1932), ¢, which for non-inertial Newtoni

called creeping motion—is defined as a solution of the biharmoni

equation:

vy = 0%/3x? + 203% /x23y* + 3% /0y*=0

The stream function is related to the velocity components by the expr

u= —03y/dy
and:
v=20y/dx

Here u is the velocity component in the horizontal direction x, and |
component in the vertical direction y.

The significance of the stream-function method is based on the ¢
solutions of the biharmonic equation are functions (by definition strea
whose derived velocity, strains and stresses automatically satisfy threc
dynamic relationships, viz. (1) the condition of continuity, (2) the 1
equation of motion, and (3) conservation of energy.

For two-dimensional flow of incompressible fluids the relation:

du/dx +dv/0y=0
expresses the condition of continuity. From the definition u= —dy

9y /0x follow du/dx = — 9%y /dydx and dv/dy =03%/0xdy, afld
mediately that continuity is automatically satisfied in models definec

function.
For non-inertial viscous flow in two dimensions the Navier-Stokes

motion take the form:
P /ox — 17(82u/8x2 +92u/0y?) =0
oP/dy — n(820/8x2 +9%/3y*) +pg=0
Since v is the velocity component in the vertical direction y, the grav
included in eqn. (6).
Differentiation of all terms in eqn. (5) with respect to y and all ter
with respect to x yields:
92P /3xdy — 1(3%u/3x2dy + 3’u/0y*) =0
92P/3ydx —n(d%,/3x> + d%v/0y%9x) =0
Subtracting eqn. (8) from (7) and applying expressions 3y,/dy = —u
one obtains:

3%y /ax* + 20%/0x3y? + 9%y /3y* =0
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for slow tectonic processes, enables us to apply a powerful stream-function method

to the evolution of a number of deformation structures encountered in the field.
Any two-dimensional motion can be described by a stream function (Lagrange.

1781; Rankin, 1864; Lamb, 1932), ¢, which for non-inertial Newtonial flow—so-

called creeping motion—is defined as a solution of the biharmonic differential

equation:

VA = 9%/0xt 4+ 20%/0x2y? + 3% /3yt =0 (1)
The stream function is related to the velocity components by the expressions:

u= —3y/dy (2)
and:

v=3y/dx (3)

Here u is the velocity component in the horizontal direction x, and v the velocity
component in the vertical direction y. N

The significance of the stream-function method is based on the condition that
solutions of the biharmonic equation are functions (by definition stream functions).
whose derived velocity, strains and stresses automatically satisfy three crucial fluid
dynamic relationships, viz. (1) the condition of continuity, (2) the Navier-Stokes
equation of motion, and (3) conservation of energy.

For two-dimensional flow of incompressible fluids the relation:

du/dx +dv/0y =0 (4)

expresses the condition of continuity. From the definition u= —3¢/dy and L =
3y /dx follow du/dx= —0%y/dydx and dv/dy=03%/dxdy. and one sees im-
mediately that continuity is automatically satisfied in models defined by a stream
function.

For non-inertial viscous flow in two dimensions the Navier-Stokes equations of
motion take the form:

AP /3x —n(d%u/dx?+ 8%u/dy?) =0 (5)
3P/dy —n(0%,/3x> + 3% /3y*) + pg=0 (6)
Since v is the velocity component in the vertical direction y, the gravity term pg is
included in eqn. (6).

Differentiation of all terms in eqn. (5) with respect to y and all terms in eqn. (6)
with respect to x yields:

32P/3xdy — 1(3%u/3x?3y + 3%u/3y’) =0 (7)
32P/3ydx — 1(3%,/9x> + 3% /3y?dx) =0 (8)

Subtracting eqn. (8) from (7) and applying expressions d¢/dy = —u and 9¢,/dx = v
one obtains:

0% /0x4 + 20%,/0x23y2 + 3% /3y* =0



which is the biharmonic base for stream functions. Hence the equations of motion
are automatically satisfied in models defined by stream functions.

It 1s particularly important to realize that energy is also automatically conserved
when expressed by formulas derived from one and the same stream function. This
gives crucial support to the validity of the energy-extremizing method of determin-
ing coefficients in a polynomial stream function (p. 216).

To demonstrate that energy is automatically conserved when derived from a
stream function requires quite a lengthy mathematical procedure, so let it suffice
here to merely indicate how the demonstration may be performed.

For a deforming viscous model described by a stream function there are several
categories of mechanical energy to consider, and all are derivable from the stream
function used. Expressed in terms of rate of change of energy per unit volume (for
strain energy and potential energy) or per unit surface area (for energy due to stress
at the boundary), the different categories are:

é, = 4néi, the rate of change of normal-strain energy per unit volume; (9)
é,=ny,, therate of change of shear-strain energy per unit volume; (10)
€po = P8V, the rate of change of gravitational energy per unit volume; (11)
é, =10, the rate of energy input or output per unit area due to shear (12)

stress at the boundary; and finally

5, =o,u,, therate of energy input or output per unit area due to normal (13)
stress at the boundary.

In these expressions subscript ¢ indicates direction in space, v is the velocity
component in the vertical direction, 7, is shear stress parallel to the boundary, v, is
the velocity at the boundary parallel to the shear stress, o, is normal stress at the
boundary and u, is the velocity component normal to the boundary.

To obtain the energy changes for the whole model the quantities ¢, é, and €pot
must be integrated over the volume occupied by the model and é, and é, must be
integrated over the boundary. Using capital letters for the integrated energies we
combine some of the energies specified above:

E,=E+E, (14)
E, =E,+E, (15)
The crucial point is that when Eq, E,, and Epol are derived from one and the same

stream function, we find that the condition of conservation is automatically satis-
fied, viz:

E +E, +E, =0 (16)
In other words, energy;as expressed by formulas derived from a stream

function—is being conserved during the strain and motion which occur in the
model.

In order to derive the energies the following formulas are used:
2 2 2 \2
2= () - kA é2=(2)=(a¢)
x 9x dxdy Y ay 9x0y

2 2 2, \2
o y+gg) _ _a_¢+_a_¢)
xy ay ox a)’z 8x2

Ty = Tn-’x_y and o, = 2néx - P

together with the derived velocity components.

o form P, the general formula:
aP apP
=—dx+—-d
dP % dx 3y y

is applicable. Here we introduce:

3
“’(a_a_)( R +M)

x| g2 dy? ax2y 0y’
and:

2 2 K Y
a_P_=n _8_U+3_2 —pg=’q(——4§+——2)_Pg
dy ax?  9y? dx 0xdy

Again, the last two equations are directly derived from the stream fi
In order to obtain P (and thus also o) by integration of eqn. (20
realize that d P is an exact differential. This can be shown when the

apP apP
3(5;)/3)1= a(a)/ax
is applied in combination with the biharmonic v*y = 0. |

When the above formulas are applied to a stream function descr!
ing model of Newtonian material the condition of conservation
energy expressed in eqn. (16) follows. .

In accordance with the explanation above, we conclude with ]
140): “If a stream function can be found which satisfies the bounda
a dynamic model the complete solution follows.” The stream f'unc
velocity field, which in turn implies the strain rate and accordingl
coefficient and density—also implies the stress distribution and th
dissipation due to viscous strain, as well as the rate of. change of .p
Also the rate of energy input/output due to stress acting on movit
implied in the stream function when viscosity and density are given.
the real problem is to find the appropriate stream function; to e
pertinent information is mostly routine use of standard fluid dynaml:c'.

We note that stream functions give the instantaneous velociti
neous strain rates, the instantaneous stress distribution etc._The e\
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In order to derive the energies the following formulas are used:

2
o[y _[_ 3% g2=(@)2=( 82"!’) (17)
€= ax xdy [ ¥ dy dxady
2
2 %+ﬂ)2= _ﬂJrizi) (18)
xy dy  dx 3y,  9x?
T., =17, and o, = 2né, — P (19)

together with the derived velocity components.
To form P, the general formula:

apP P (20)

=— —d
dpP 8xdx+8y y
is applicable. Here we introduce:
(T ) ) o
dx Ix?  3y? x¥y 9y’
and:

2 2 3 33

L ) —pg=n ., ‘PZ)—pg (22)
ay dx?  3y? x> axdy

Again, the last two equations are directly derived from the stream function.
In order to obtain P (and thus also g) by integration of eqn. (20) it is useful to
realize that d P is an exact differential. This can be shown when the criterium:

(2o

is applied in combination with the biharmonic V4 = 0. N

When the above formulas are applied to a stream function describing a deform-
ing model of Newtonian material the condition of conservation of mechanical
energy expressed in eqn. (16) follows.

In accordance with the explanation above, we conclude with Jaeger (1956, p.
140): “If a stream function can be found which satisfies the boundar.y co.nditi.ons of
a dynamic model the complete solution follows.” The stream function fmpyles t.he
velocity field, which in turn implies the strain rate and accordingly—via viscosity
coefficient and density—also implies the stress distribution and the rate of energy
dissipation due to viscous strain, as well as the rate of change of potential en'erg)_'.
Also the rate of energy input/output due to stress acting on moving boundaries is
implied in the stream function when viscosity and density are given. In other words.
the real problem is to find the appropriate stream function: to extract the.’ other
pertinent information is mostly routine use of standard fluid dynamic relations.ths.

We note that stream functions give the instantaneous velocities. the instanta-
neous strain rates, the instantaneous stress distribution etc. The evolution in finite



time of a model accordingly depends upon integration problems not related to the
question of finding the stream function itself. However, even if integration over a

finite time interval may pose formidable and perhaps even insoluble problems, .

quantitative knowledge of the instantaneous velocity, stress etc. is itself of great
value for the understanding of the evolution of rock structures. See also p. 239,

For periodic structures such as, for example, bucklefolds in layered rocks and
periodic series of domes and diapirs, harmonic stream functions of type:

Y =exp(£wy)[4 cos(wx) + B sin(wx)] (23)
Y=y exp(£wy)[4 cos(wx) + B sin(wx)] (24)
(w=2m/A, X is wavelength)

both being solutions of v*} = 0—are applicable and yield useful results such as the
dominant wavelength of folds, the spacing between diapirs, the rate of isostatic
adjustment etc. as long as the amplitude is small compared with the wavelength.
This is demonstrated and thoroughly discussed in some of the works cited above
(e-g., Ramberg, 1968, 1981) and will not be repeated here. Instead we shall consider

polynomial forms of stream functions, which are applicable to various non-periodic
geologic structures,

A USEFUL DOUBLE-POLYNOMIAL STREAM FUNCTION

The application of a polynomial stream function to the slow “creeping” gravita-
tional spreading of a viscous nappe was published in Ramberg (1981, pp. 267-226).
(Unfortunately a numerical error affected the calculated strain energy of the model,
but a correction has been published, see Ramberg, 1985.)

In the cited book (Ramberg, 1981) the stream function was applied to a simple
nappe model with a rather special velocity field. The nappe was coherent to the rigid
basement, and it was symmetric about a vertical plane through its center. This
means that the velocity components » and v vanish at the base, that » vanishes also
at the central cross section and that the stream function developed was not useable
for nappes with more realistic boundary conditions.

In the present study we shall develop a polynomial stream function which is
versatile enough to simulate a variety of non-periodic structures, including nappes
with non-vanishing velocity at the base. Nappes described by stream functions of
this nature are not only permitted to slide along the base while spreading gravita-
tionally, but also allow a “push from behind”. Incidentally, it is interesting to note
that the double-polynomial function to be developed (eqn. 31) is comprehensive
enough to contain the periodic solutions (23) and (24). This can be demonstrated by
appropriate adjustment of the arbitrary coefficients using Taylor-Maclaurin series
for sin(wx), cos(wx), exp(wy).

To develop the general polynomial stream function it is convenient to start by
considering the velocity component u and its variation with y at distance x from

i
|
|
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Fig. 1. Right-hand half of viscous body with initially rectangular cross secl.ion paral
with infinite length in z. Initial cross section dashed, profile after arbitrary u.rne of de
solid lines. Displacement of vertical straight marker at x indicated by velocity vecto

the central plane (Fig. 1). As the material of the nappe 1s s
homogeneous and Newtonian, u is evidently a contmuo.us 2.1nd SmMoo
at constant x. Hence u can be expressed as a polynomial in y:

u=— [a +2by + 3cy? +4dy’ + ... +nwy‘”_”]

(cf. Weierstrass’ theorem which states that any continuous funct

proximated by a polynomial—Courant, 1953, p. 423). |
The reason for the negative sign and the factors 2, 3...n :

coefficients is to obtain a positive and simple form of the corres

function—see below. In polynomial (25) the coefficients are .unkno

x, and each of the coefficients may be expressed in polynomial fori

2 (m-1)
a=a,ta,x+ta;x"+...+ta,x

. _1)
b=b,+byx +byx>+ ... +b,x"
._1)
c=c¢ teyx+ e x4 .+, xt

2 (m=1)
w=w +wx +wyx+ . tw, X

Using the definition u = —dy/dy we form a function ¢ by inte
y=ay+byt+ o’ +dyt+ .. +wy" + f(x)
Here f(x) is a function of x alone. From the definition v = /0

form of ¢ follow that f(x) determines the velocity component v a

reasonable to express f(x) as a polynomial in x:

m—1)
f(x) =0, +ax+a;x®+ ... +a,x"

(Clearly, eqn. (27) as it stands is not a stream function unless th
correlated in accordance with the constraint w4 = 0. The result ¢
is shown below, p. 214-215).
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72

Fig. 1. Right-hand half of viscous body with initially rectangular cross section parallel to plane xy and
with infinite length in z. Initial cross section dashed, profile after arbitrary time of deformation shown in
solid lines. Displacement of vertical straight marker at x indicated by velocity vectors.

the central plane (Fig. 1). As the material of the nappe is supposed to be
homogeneous and Newtonian, u is evidently a continuous and smooth function of y
at constant x. Hence u can be expressed as a polynomial in y:

u= —[a+2by+3cy2+4dy3+...+nwy("‘”] (25)

(cf. Weierstrass’ theorem which states that any continuous function can be ap-
proximated by a polynomial— Courant, 1953, p. 423). .

The reason for the negative sign and the factors 2, 3...n in front of the
coefficients is to obtain a positive and simple form of the corresponding stream
function—see below. In polynomial (25) the coefficients are unknown functions of
x, and each of the coefficients may be expressed.in polynomial form:

2 (m-1)
a=a,ta,x+ax"+...+a,x

b=b,+byx+byxt+ ... +b,x" D

m—1 26)
c=c, +ex+oxt+ . +e,x"h (

-1
w=w, +wyx +wyxt 4w, x )

Using the definition u = —3y,/dy we form a function ¢ by integration:
v=ay+ b+ o+ dt+ o Hwy +f(x) 27

Here f(x) is a function of x alone. From the definition v = 3¢,/9dx and the ab_ov.e
form of ¥ follow that f(x) determines the velocity component v at y = 0. and it is
reasonable to express f(x) as a polynomial in x:

f(x) =0, +ax +ayx? + ... +a,x" D (28)

(Clearly, eqn. (27) as it stands is not a stream function unless the coefficients are
correlated in accordance with the constraint ¥4y = 0. The result of this correlation
is shown below, p. 214-215).



EQUATION 29

Loy p2 g3yt s D
1 a ap by ¢ dy e . ow
x @y 4y by oy dy ey ... wy
2
X a4y by oy dy ey . owm
x? ay ag by ¢y dy ey .. owy,
x* as a5 by ¢5 ds es ... wy
..\' 3 fx‘, 4o by g dy eq ... wg
<Y, a, b, e, d, € . W,

The function  is conveni i i
can (39 v niently presented in the form of a two-dimensional array,~
](;hls arrpanqge-ment'means that each element in the array is the coefficient for the
;:hro u;:t X ¥ in \.)Vthh x? is the multiplier for the row, and y¢ the multiplier for
e column, .1r? which the element occurs. 4,, for example, is the coefficient for x3y*
¢ the coefficient for x°y?, b for x*y? etc., thus d,x?y*% c,x5p* and b.x*)> e
examples of terms in the polynomial. e S
des\iNh;:ln the coef;’liciems of the double polynomial are presented in array form it is
rable to use the mo - i i
50 re self-explanatory double-index notation expressed in eqn.
N 13 the double po]ynomi'al (.30) the number of unknown coefficients is m - n when
eW egree of the polynomial is (m — 1) with respect to x and (n — 1) with respect to
i);m te s'ee th;at the number of unknown coefficients is considerably reduced by the
e s lral'nt v =0. Aft'er some cumbersome algebraic and arithmetic operations the
rrelations recorded in eqn. (31) based on degree 14 in both x and
determined. e
» (To ’detirmine the coefficient correlation we derive 3%/3x*, 3%/dy* and
¥/3x°dy* from polynomial (30), collect terms with same power of x and same

EQUATION 30

1 ¥ yioopt oty Ly
Colamon e
, 2 22 23 24 4y dyg ... dy,
-"J 43 a3y d3y3 dyy d3s dyg ... dj,
X4 a1 day  dyy dgq Uy dy .. 4y,
"'5 45y dsy  ds3  dsy  dss  dsq ... ds,
:" 4e1 o2 963 Fea  dos  eg ... dgy
Am—1
A ! 4m Ay dp3 g Ams e Qon

power of y, put each collection of equal-power terms in the form:
294y /9x23y2 + 3%/3y* and equate to zero. From the set of eq
obtained the coefficient correlation follows.)

We find that the coefficients in the two first columns and in the tw
rows are arbitrary while the remaining coefficients either vanish or are
the coefficients in rows 1 and 2, and in columns 1 and 2.

Row 1 constitutes a polynomial in y, and row 2 a polynomial in y 1
x in the first power. Column 1 constitutes a polynomial in x, and
polynomial in x multiplied by y in the first power. These four polynoi
incidentally have the coefficients a,;, a3, d31, 42 in common-—are
polynomials whose coefficients are not constrained by the condition
are instead free to assume any values determined by the conditions i
special model studied.

One notes that the four arbitrary polynomials in the double-power
of the partial differential equation v =0 play the same role as
constants in series solution of ordinary differential equations (see, e.
Tranter, 1961, p. 111 ff.).

In the following we distinguish between the arbitrary coeffici
dependent coefficients, the latter being functions of the former.

It is interesting to note that the high-degree cross terms, d; e
when i+ /> p + 2 where p is the degree of the arbitrary polynomial:
p = 14 and we see that all coefficients whose index sum i +j > 16, are

worth noting that the degree of the arbitrary polynomials in y is th
degree of the arbitrary polynomials in x, i.e. m=n. This is a ¢
v =0.

1t is rarely necessary to use the comprehensive polynomial (31) of
as 14. Truncated versions will usually do to analyse physical models. .
are therefore perhaps needed concerning the procedure of truncating
altering the polynomial in such a manner that the altered version rem
of v4y =0, and hence a valid stream function.

If we look carefully, we note that only coefficients with equ
p = i + j, are correlated. This means that correlation involves only co¢

same diagonal running from upper right to lower left. It is also inte

one and the same diagonal only coefficients in alternating sites ai

example, a3 15, dsyy, d7gr Gg7s Ayys and a5 are interrelated becau

functions of the two arbitrary coefficients a, ;5 and a5 . Similarly a
a,,, and ay,, are interrelated because all are functions of the
coefficients a,, and a,,,.

It follows from the first relationship that the polynomial can
without violating the constraint V%) = 0, by cutting out diagonal af
coefficients with a successively smaller index sum, p=i+J.

Another way of altering the comprehensive polynomial withoul
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a by o d e .. ow

ay by ¢y dy € .. ow

a3 by ey dy ey . wy

4g by ey dy e, .. w,

as by 5 ds es ... ows

R A A A We
by ¢, d, e, W,

tion ¢ is conveniently presented in the form of a two-dimensional array,”

ngément means that each element in the array is the coefficient for the
;.‘7 in which x? is the multiplier for the row, and y? the multiplier for
in which the element occurs, dy, for example, is the coefficient for x3y*
cient for x°y3, b for x*y? etc., thus dyx’y%, cox5p% and box?y? are
terms in the polynomial. e e
coefficients of the double polynomial are presented in array form it is

use the more self-explanatory double-index notation expressed in eqn.

ible polynomial (30) the number of unknown coefficients is m - n when
the polynomial is (n — 1) with respect to x and (n — 1) with respect to
llt the number Qf unknown coefficients is considerably reduced by the
¥ = 0. After some cumbersome algebraic and arithmetic operations the
recorded in eqn. (31) based on degree 14 in both x and y, are

nine the coefficient correlation we derive 9%,/8x% 3% ,/3y* and
from polynomial (30), collect terms with same power of x and same

v »ooy ¥ e

12 dia ay a5 ag e Ay,
2 4y Ay dys Ay .. drp
32 4y Ay dizs as s dyy,
2 daz dyy dgs ay s dy,
20 ds3 dsq dass ag, L. dsp
2 _‘163 dea  dgs  dgg s dey,
w2 a3 Ama Ay a6 Apn

el

power of y, put each collection of equal-power terms in the form: 9% /dx* +
20%,/0x%9y?+ 9%/dy* and equate to zero. From the set of equations thus
obtained the coefficient correlation follows.)

We find that the coefficients in the two first columns and in the two uppermost
rows are arbitrary while the remaining coefficients either vanish or are functions of
the coefficients in rows 1 and 2, and in columns 1 and 2.

Row 1 constitutes a polynomial in y, and row 2 a polynomial in y multiplied by
x in the first power. Column 1 constitutes a polynomial in x, and column 2 a
polynomial in x multiplied by y in the first power. These four polynomials—which
incidentally have the coefficients ay,, a,,, a,,, a5, in common—are the arbitrary
polynomials whose coefficients are not constrained by the condition v%y =0, but
are instead free to assume any values determined by the conditions imposed by the
special model studied.

One notes that the four arbitrary polynomials in the double-power series solution
of the partial differential equation V%) =0 play the same role as the arbitrary
constants in series solution of ordinary differential equations (see, e.g.. Lamb and
Tranter, 1961, p. 111 ff.).

In the following we distinguish between the arbitrary coefficients and the
dependent coefficients, the latter being functions of the former.

It is interesting to note that the high-degree cross terms, a,.jx“‘”y”"“. vanish
when i +j > p+2 where p is the degree of the arbitrary polynomials. In egn. (31)
p =14 and we see that all coefficients whose index sum i + j > 16. are zero. It is also
worth noting that the degree of the arbitrary polynomials in y is the same as the
degree of the arbitrary polynomials in x, i.e. m=n. This is a consequence of
v =0

It is rarely necessary to use the comprehensive polynomial (31) of as high degree
as 14. Truncated versions will usually do to analyse physical models. A few remarks
are therefore perhaps needed concerning the procedure of truncating and otherwise
altering the polynomial in such a manner that the altered version remains a solution
of V% =0, and hence a valid stream function.

If we look carefully, we note that only coefficients with equal index sum.
p =i +j, are correlated. This means that correlation involves only coefficients in the
same diagonal running from upper right to lower left. It is also interesting that in
one and the same diagonal only coefficients in alternating sites are related. For
example, a3, @syy, dq9, Ag;, @y 5 and a,;; are interrelated because they are all
functions of the two arbitrary coefficients a, |5 and a5 ;. Similarly a,,. a¢ . dgs.
d106 and a;,, are interrelated because all are functions of the two arbitrary
coefficients a,,, and a,,,.

It follows from the first relationship that the polynomial can be shortened
without violating the constraint v*} = 0, by cutting out diagonal after diagonal of
coefficients with a successively smaller index sum, p =i +.

Another way of altering the comprehensive polynomial without nullifying the



EQUATION 31

1 : )2 3
» » v »? v y® y’
1 a -
1 daya 413 a a
14 15 6 ayq dyy
X Uy, U,
5 22 a a
23 24 das 2 da7 Aoy
7 2
x* u u dyy = =
31 12 33 34 = d3s = d3e = 3y = d3x =
=3(as =5ay¢ — 1044 - 14a —2la 27
A - 1% 19 IR
51 dsy +5a4 +up —Tag, —a
92
3
X a a
4l 42 a = =
43 “445 45 = Qa6 = a4 = dag =
—a _3 10 14
25 a — 34 3 -
; 3(dae 3427 3 4oy Tz =3Q3ayy,
—Sa + B !
61 dea) +3a
2 3 dy +3dg + 3ay0,) +dyp2)
4
X a a =
51 2 ds3 = = =
52 553 ‘3’554 dss = dse Usy dsg =
a 35
17 3 A1y 35(ayy 63a; 14 1264, ,, 1984, ;,
—10a -
7 aq; +ta + -
3 91) Tagyy 84a,,, ~12ay; 5
s
X a4y
62 de3 = = =
63 dpa des = Aep = der= ey =
7
as 7, 63 126
7 342g Td g s (dao 54y s,
— 144 — 12 y
81 a +6 924
5 Uy 3dy0. + dy92) S diag s,
6
RY d a
7 7 a = =
73 a7, dqs = a6 = an= Ay =
—a -73 :
19 (Bu ~84q - % -
s ) 110 111 s d112 462(a; ;3 —66(13a, 4
dg, + dy,) +1264 1
2 1 tosana +di3,) +d)3;)
7
X a a =
1 %2 dg3 = =
¥3 Ay dgs dge = dg7 = dgg =
—dag -3(ay g+ -— — 1z
; (4210 12a5,,+ 54212 —66(ay 3+ —858/7
~27u +3 198
0.1 a154) +1984 + -
121 s 4122 t13ay4)) (aa14+ aggy)
x .
X a a
91 92 dy3 = = =
993 gy dys = dge = dyy =
a:;'(;l 334, 165(a, |5 66(6.5a, 1, 1287a, s
—36u -12 .
1.1 ay +24a +a -
9 13.1) 13.2) 171645,
X a a = =
10.1 10.2 4103 4104 = A5 = A6 =
U, Uiy 3 143
21 3(dan 3 (4213 5 (a4
~444 -4 .
a
1211 12.2) +26414))  +2ay,,)
10
X a =
11 4.2 a5 3= a114= di1s =
_ 33
11(a, |5 5(2.6ay 14 286(— a5
+5da131)  +apsa) +2.5a;5,)
11
X a a = =
12.1 122 4i23 di24=
- _B
(a3 3(d24
+65d,4,) +5ay,,)
32
X di3y dy3n 4133 =
13(ay 5
—6asy)
13
131 4142
14

dysy

2 3

pe Vo 10 pi yl il
dyy ay10 a1 ay12 a3 d; 14
dry 4210 sz 4312 dr13 4114
dag = dzi0= a3 = a3 = a3 =

—36a 44, 5 = 55113 —(65d;.14 13(— 64,5
+9a. +an» —llagy, +dy33) +ds,y)
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1 55 13

=124y, s (—4dan -5 (d213 =5 6da4a
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55

165(2ay |5 5 (264, 14 286(2.54, )5
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3
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- 17164, ;5
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biharmonic constraint is to cancel rows or columns. To find out how |
note that all rows with dependent coefficients whose i-index is even
arbitrary coefficients whose i-index is also even, and all rows wit
coefficients having odd i-index contain only arbitrary coefficients whe
also odd. Hence one can either cancel al/l rows with even index i, or o1
all rows with odd index i, yet the condition v4 =0 remains sati
resulting altered polynomial. If the rows with odd i-index are cancelle
obtain the polynomial valid for the symmetrical model without motiol
If in the same polynomial all arbitrary coefficients with jindex=1a
cancelled we obtain a polynomial which yields v=u=0at y = 0; that
function valid for a symmetrical model welded to the base has been o
Returning now to the columns, a parallel situation is noted. Co
dependent coefficients have an even Jj-index contain only arbitrar
whose j-index is also even; and columns with dependent coefficients
j-index contain only arbitrary coefficients with an odd j-index. Thi
none of the coefficients in columns with an odd j-index are related
coefficients in columns with an even index j, while at least some co
column with, say an even index j are related to some coefficients 1
with an even j-index, and the same interrelation holds for columns
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biharmonic constraint is to cancel rows or columns. To find out how to do this we
note that all rows with dependent coefficients whose i-index is even contain only
arbitrary coefficients whose i-index is also even, and all rows with dependent
coefficients having odd i-index contain only arbitrary coefficients whose i-index is
also odd. Hence one can either cancel al/l rows with even index i, or one can cancel
all rows with odd index i, yet the condition v =0 remains satisfied for the
resulting altered polynomial. If the rows with odd i-index are cancelled. we in fact
obtain the polynomial valid for the symmetrical model without motion at the base.
If in the same polynomial all arbitrary coefficients with j index =1 and 2 are also
cancelled we obtain a polynomial which yields v=u=0at y= 0; that is the stream
function valid for a symmetrical model welded to the base has been obtained.
Returning now to the columns, a parallel situation is noted. Columns whose
dependent coefficients have an even j-index contain only arbitrary coefficients
whose j-index is also even; and columns with dependent coefficients with an odd
Jj-index contain only arbitrary coefficients with an odd j-index. This means that
none of the coefficients in columns with an odd j-index are related to any of the
coefficients in columns with an even index j, while at least some coefficients in a
column with, say an even index j are related to some coefficients in all columns
with an even j-index, and the same interrelation holds for columns with an odd



index . It follows from these relationships that the comprehensive pol i

be al_tc?red, and still remain a solution of %y =0, if either al? y?omlal m'ay

coefficients with an even j-index are cancelled, or all c,olumns with o 'umns Wl'th

an odd j-index are cancelled. coeticients with

Conlif;f;)re applym_g stream function (31) to physical models, it is desirable to
nt on certain problems related to stream-function simulation.

THE PROBLEM OF SATISFYING BOUNDARY STRESSES AND STRAINS

Salilstf;’s. lmportalnt tlo be aware of the difficulty in polynomial stream functions of
ing completely the surface strains and stresses existing i i
" _ existing in physical models. In
toeS:?izl ?;:czlbeg' l?y Ra;nberg (1981, pp. 207 ff.), for example, it was not possible
ondition of vanishing shear at the free vertic
' : al front face of th
Egll;?s.mg n'appe. The shear at the front face could only be made to vanish if al?
etficients in the stream functi 1
ochcler lon were reduced to zero, obviously a meaningless
grel:escail:lse the pol)fnomial. used in Ramberg (1981) was of rather low degree—de-
gree 3 in fyaazfit 3in x—ffnt seems not an unreasonable assumption that the larger
roitrary coefficients in a higher degree pol i i
shear at the front face to vanish wi i I conthicionts 10 20 e e
ithout reducing all coefficients t is i
: o zero. This is
unfortunately not so, a fact which can be demonstrated by applying the expression:

Yx, =0u/0y + 9v/0x = —82¢/8y2+82¢/8x2=0 (32)

n add t p n a StIeS f[ee fIOllt face Wllell usin
I)()ly]l( )]lllal stream ‘u”c[l()"s, tlle[e are lllllltatlons When 1t comes to exact SlIIlulaUOll
Of a stress free tOp SLllfaCC Ot IIlOdelS. It pOSCS no dlfh.Culty to éllhel app]y a
COlldlllOll Of Val’llshlng Slleal stress at the tOp face, or a COndlUOn Of Vanlshlllg
nor lllal stress but 1t seems not always pOSSlble to apply bOtll COlldlthllS Sllllulla-

10N 1mages 1s tllat the true h Slcal bOundaI
COlldlllOnS Y = 0 and ag. = 0 at tlle f]()" 1ace or lle C()Ildl 10 oI simu talle()us
Xy X t t
tion f 1 l
ay n I hOW thell fl H lle t (-4
authCl aFFhEd llle pllrlClF Ie Of EXItr cmum rate Cf dlSSlpa[lcn Cf EnElg) Or the
equlvalelll extr emum rate ()‘ declule (o] I)ote]ltlal ener y—as a means ()1 de eI n

coefficients (Ramberg, 1981, p. 211). Depending upon whether the for
velocities are considered constant during the procedure of determining
extremum, the latter is either a maximum (at constant forces) or a mi
constant velocities).

In the model of a gravitationally spreading nappe not horizontally p
driving force is fixed, viz. the body force of gravity, and the potential gra’
is the sole supply of energy which keeps the system moving and
Therefore gravitational spreading will take the path characterized by ma>
of decline of potential energy, coupled with the side condition that I
potential energy change balances the rate of dissipation due to viscous s
happens is that the principle of maximum rate of decline of potential
maximum rate of dissipation if one prefers—controls the values of the
in the stream function in such a manner that the corresponding ve
assumes a geometry, which—under the prevailing constraints—gives
resistance and accordingly maximum rate of collapse and maximum rate
ing of the body. (Cf. Gauss’ “Principle of Least Constraint”: “The n
system of interconnected points, interconnected in any way and submi
influence takes place so that the constraints on the system are the leas
Van Nostrand’s Scientific Encyclopedia, 1959, p. 731.)

With the theory of non-equilibrium thermodynamics in mind, e.g.
(1970), interesting to consider the change of entropy associated with
changes. In Newtonian viscous flow of incompressible fluids, the
structure of the-fluid before and after flowage is the same, and the ent
material remains unchanged during flow at constant temperature. The ¢
change which takes place is therefore due to the heat produced by vis
divided by the instantaneous temperature. Maximum rate of dissipation
accordingly equivalent to maximum rate of production of entropy.

The energy-extremizing method generates enough relationships to
determine all coefficients in the polynomial. Examples of this kind of ca
found below.

It admittedly gives grounds for worry that the lack of stress at the fr
in the physical model cannot be expressed by derivation from a polync
function, and one wonders how significant this lack of exact cor
between physical- and mathematical model may be.

A crucial aspect of this problem is the condition that energy is a
conserved when derived from a stream function as pointed out on p. 2

For the model considered the principle of conservation of energy 1s

eqn. (33):
AE'Ipol + AE“Y - AEUT = 0

Here the change of potential energy is reckoned positive when in
negative when decreasing; the strain energy is always positive and the e
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coefficients (Ramberg, 1981, p. 211). Depending upon whether the forces or the
velocities are considered constant during the procedure of determining the energy
extremum, the latter is either 2 maximum (at constant forces) or a minimum (at
constant velocities).

In the model of a gravitationally spreading nappe not horizontally pushed, the
driving force is fixed, viz. the body force of gravity, and the potential gravity energy-
is the sole supply of energy which keeps the system moving and deforming.
Therefore gravitational spreading will take the path characterized by maximum rate
of decline of potential energy, coupled with the side condition that the rate of
potential energy change balances the rate of dissipation due to viscous strain. What
happens is that the principle of maximum rate of decline of potential energy—or
maximum rate of dissipation if one prefers—controls the values of the coefficients
in the stream function in such a manner that the corresponding velocity field
assumes a geometry, which—under the prevailing constraints—gives minimum
resistance and accordingly maximum rate of collapse and maximum rate of spread-
ing of the body. (Cf. Gauss’ “Principle of Least Constraint”: “The motion of a
system of interconnected points, interconnected in any way and submitted to any
influence takes place so that the constraints on the system are the least possible™.
Van Nostrand’s Scientific Encyclopedia, 1959, p. 731.)

With the theory of non-equilibrium thermodynamics in mind, e.g., Gyarmati
(1970), interesting to consider the change of entropy associated with the energy
changes. In Newtonian viscous flow of incompressible fluids, the microscopic
structure of the-fluid before and after flowage is the same, and the entropy of the
material remains unchanged during flow at constant temperature. The only entropy.
change which takes place is therefore due to the heat produced by viscous strain,
divided by the instantaneous temperature. Maximum rate of dissipation of energy is
accordingly equivalent to maximum rate of production of entropy.

The energy-extremizing method generates enough relationships to allow us to
determine all coefficients in the polynomial. Examples of this kind of calculation are
found below.

It admittedly gives grounds for worry that the lack of stress at the free front face
in the physical model cannot be expressed by derivation from a polynomial stream
function, and one wonders how significant this lack of exact correspondence
between physical- and mathematical model may be.

A crucial aspect of this problem is the condition that energy is automatically
conserved when derived from a stream function as pointed out on p. 208.

For the model considered the principle of conservation of energy is expressed in
eqn. (33):

AE, . +AE, - AE, =0 (33)

Here the change of potential energy is reckoned positive when increasing and
negative when decreasing; the strain energy is always positive and the energy change



due to stress acting on moving parts of the boundary is positive if energy is
introduced into the body and negative if the body imparts energy to the surround-
ings.

In the procedure for determining the coefficients by maximizing the rate of
energy change, the rate of decline of potential energy was equated with the rate of
dissipation due to viscous strain, i.e., E‘pm + 15'}7 was put equal to zero, in agreement
with the fact that potential energy was the only driving power in the system. From
eqn. (33) we see that a consequence of this is that E, =0. In other words, the
energy change due to the discrepant boundary stresses—i.e., the stresses which
cannot be made to vanish when derived from the stream function even though they
are zero in the corresponding physical model—vanishes when integrated over the
entire boundary. Or expressed differently: the average energy change due to the
discrepant boundary stresses is zero. From this crucial information we conclude that
the lack of exact correspondence as regards boundary stresses between a physical
model and its polynomial stream-function image may only be of marginal conse-
quence for the dynamic behaviour of the mathematical model. Thus the velocity
field calculated from a polynomial stream function should approximate quite well
the physical model as long as correct input values for viscosity, density and
geometric shapes and dimensions are used.

In view of the above comments it is reassuring to find that the validity of the
method of maximizing the rate of dissipation—or rate of declining potential energy
—during gravitational viscous collapse has been demonstrated experimentally,
(Mulugeta and Ramberg, in prep.).

SIMULATION OF A SPREADING COMPOSITE NAPPE
The use of continuity of velocity and stresses at layer interface

Complete coherence at the base and free slip along the base discussed in
Ramberg (1981) represents two extreme situations not likely to be found in the real
world. In many nappes and thrust sheets motion occurs along the basal plane in
contrast to the coherent model, but the motion is clearly not frictionless as it would
be in a free slip model. To incorporate restricted basal motion in the model one
- cquld apply a reasonable coefficient of friction assuming slide along a rigid surface,
but one could also consider motion in the form of concentrated viscous shear in a
" relatively thin basal layer. We shall treat the latter possibility and in so doing assign
a relatively low Newtonian viscosity to the basal layer whose contact to the
overlaying complex is coherent and mobile while exhibiting immobile contact to the
" rigid basement.

The model to consider is indicated in Fig. 2. It is a double-layer complex riding
on a rigid horizontal basement. Both layers are homogeneous with respect to
density, viscosity and thickness: P1> M, and H, are valid for the bottom layer, and
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In ¢, and in the first version of ¢, the coefficients are indexed exactly as in the
comprehensive eqn. (31) in order to show clearly how the truncation and modifica-
tion of the comprehensive polynomial are performed. We shall keep the original
subscripts of the coefficients in ¥, but it is practical for the operation that follows
that the coefficient notation in ¥, is changed as shown in its second version. In Y,
the condition u; = v, =0 at y = 0 is accounted for by letting coefficients a,, and a,,
vanish, i =2, 4 and 6.

A condition for dynamic equilibrium is that the velocity be continuous across the
contact (i€, uy =u,; v, =v, at the contact). A further condition is that the
tangential shear stress and the normal stress are continuous at the contact. Together
with extremizing the rate of energy dissipation—or rate of potential energy decline
—these conditions will be used to determine coefficients.

Equation (34) is valid for 0 Sy <H,, and eqn. (35) for O0<y, < H,. Both
equations are valid for ~L <x < + L.

The following velocities are derived from the stream functions;

9y,

Uy = ———=(2ay, + 3by? + dey? + Sdyi + 6ey? + TH8) x
3y 1 1 1 1 1 1
— 2oy + 5dy} + Loyl + L) > + (2ep, + 72) x5 (36)
d
v, =% = —(ay12+byl3+cy14+dy15+eyf’+fy17)
+(3cpf + Sdy? + 10y} + 147 )x* - (Sep2 + 73 x* (37)
= 84/2 - 2 3 4
Uy=— W == (022 t2a5y,+ 3ay,y5 +daysy) + 5ayy; )x
+ [ —ap+ (2a5+ 10aq)) y, + (5ay + 5a62))’22]x3 — agx’ (38)
u=%=a +a +a 244 3+ a ‘+a 5
2 ax 21 2202 232 2402 25)2 262

+ [3‘141 +3a,y,— (3025 + 15‘161))’22 - (5‘126 + 5”62))’23] x?

+5(ag +agy,)x? (39)

" Al the contact between the two layers y,

= H, and y, = 0. Introduced in eqns. (36)
and (38) this leads to:

uy = (2aH, + 3bH? + 4cH? + SAH? + 6eH + TfHE) x
—(2cH, + SdH? + LeH] + 2 fH) 3 + (2eH, + 7fH?) x* (40)
Uy = —(a22x+a42x3+a62x5) (41)

for the horizontal velocity component. Because u is continuous at the contact for all

V ll[e ()‘ X l)e wee - (l + 1, ]l um o €rim. Wlth he ame pow [0
a

be equal in the two equations, and we find:
ag, = —2eH, = fH{

4
a, =2cH, +5dH12+%(—’eH13+?fH} 5 6
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=H,and y,=0 yields:

4
Similarly the condition v, =0, at y;

- —eH?~ /H}

61
4 14 5
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S 6 _ 7
4, = —aH?— bH} — cH{ — dHy —eH; fH,

= i ion 1,
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0 app v Vs
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) s
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 following velocities are derived from the stream functions;

d
' % = (2ayy + 3097 + 40 + 5dyt + 66y + 7p5)

elocity be continuous across the

- (2cy1 + 5dy? + Ley? + ?fyl“))c3 + (Zey1 + 7fy12)x5

(36)

b
o= —(ayf+by1’+cyf+dyf+ey16+fy¥)
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ontact between the two layers y, = H, and y, = 0. Introduced in eqns. (36)

this leads to:

Hy + 3bH? + 4cH + 5dH? + 6eH? + TfHE) x

YcH, + SdH? + LeH? + PIHY )X + (2eH, + TfHE) x* (40)
IpX + a42x3 + a62x5)
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rrizontal velocity component. Because u is continuous at the contact for all
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be equal n tlle two equathlls, alld we f“ld.

(42)
dgy = —2eH1 “‘7le2 (43)
a = 2cH, + SdH + FeH} + 3 [H} (44)
6
ay, = —2aH, — 3bH{ — AcH; — SdH - 6eH; — 7fH|
: =0 yields:
Similarly the condition v; =v, at y, = H, and y, =0 yields -
ag = _eH12 - %le3 o
o= B} 4 3+ SeHS 4 @
a, = _aH12 — le3 - ch — dHlS _ eH16 —fH17
21

To apply the condition 7., =7, at the contact we derive the expression 7., = 77,,
O ap xy) Y2

=n(3u/dy + dv/dx) =n(d%y,/x> — 9% /dy?) for the two lz:yers:
Ty = My, = 711[(20 + 6by, + 18cp? + 30dy? + 50ep; + 70£p; ) x 5

| —(2¢ + 10dy, + 60ep? + 140y} ) x> + (2e + 14fy, ) x ] (48)
Ty, — "H".wz = "72[{ —2ay + 6a, — (6024 - 6”42))’2 - (18‘125 + 30‘161)}’22

3
(30ay + 10ag,) y; } x + {2a,5 + 30ag + (10,6 + 30ag;) y; } x ] (49)
- 26

i i — contact we
As continuous shear stress is required at all points—at all x—on the
i = i =0:
find after equating 7., at y, = H; with 7, at y,

50)
f= _%Hl_le ;51)
n,(2ays + 30a,) = —1,(2¢ + 10dH, + 40eH}?)
2
and:
52
0y (—2a,, + 6a,) =0,(2a + 6bH, + 18cH? + 30dH} + 40eH} ) (52)
- 23 . .
Tzo make use of the condition 6, = g, at the contact we start with the formulaz. )
Fi Y2 5
o, = 2né, - P
and:
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aP aP (
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dpP x dx 3y y

. - . . - . - f f .
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3
% ) _aw_+a_¢) (55)
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3
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When applied to stream function y, this procedure leads to:
dP=mn,[(6b+12¢, +30dy? + 40ey} + 702 ) x |
—(10d + 40ep, +140fp2) x> + 14 x| dx
+ [”’h { —2a— 6by; — 6cyl — 10dy} — 10eyy — 144y
+(6c + 30dy, + 60ey? + 1407 ) x? — (10e + 7Ofyl)x4} - plg] dy (57)

It can be de"l n q ’
P . . .
(8} S[laled [hat d n tlllS equation 1s an exact dl“elellllal a“d
HlleglallOll can tE peltOl"led aCCCldlngly

P=n,[(3b+ 6cy, + 15dy2 + 20ep? + 35fp? ) x2

—(%d +10ey, + 35/ x* + L] + £(y) (58)

H . .
ere f(y) is an unknown function which may be found when eqn. (58) i
. is

dlffE]EntlalEd lth IespECl to y alld the e UI““ dell'atl € 15 equated “ltll tlle
paltlal dEIlvatl'e 81 /ay n eqn' (5 ‘)' Ihus s g

dP/dy =
/0y n1(6c + 30dy, + 60ep} + 14Ofy13)x2 ~(10e + 70/, )x* + 3f(y) /3y (59)

must equate with the term 9P /9y i i
y in eqn. (57), i.e., the ity i is i
must ed ' , L.e., quantity in the pa
. of dy. An expression for 3f(y)/dy is accordingly obtained: parenthesis in
f(.y)/ay =m(—2a—6by, — 6cy? ~ 104y} — 106y — 14/57) — p, g
which upon integration yields: 1 1 0

S(r)=m(=2an = 3by} - 200 — Sdyf — 2epf ~ 3fyf) — p, 0, +
Here ¢, is a constant of integration. o )

f(») can be introduced in i
eqn. (58) which in it i
normal stress parallel to y in layer 1 follows \l:h::xi'mm goss into can. 3. and the

, _ dv 0%y

€ =7=
y  0xdy

is also inserted as derived from stream function ¥
o, =2n,é,— P, = - '
= 2méy — Py =m,(~2ay — 3by? — 6cp] — Bdy? — 10ey] — L1y
+(=3b + 6cy, + 15dy2 + 60ep? + 105/ ) x2
. L3
+(3d—10ey, =352 ) x* ~ 1fx®) + p, gy, — ¢, (62)

p g p ure pe] fOI med g tullc[l()n ll/ pl ()duces an
A Corres Olldlll T Oced usin stream 2
expl‘eSSl()n fOl' lhe nor mal stress 02 mn [he tOp layer

0, =29, —P =
O My, — P 772[2”22+2az3)’2_6a41)’2+(3‘124_3‘142))’2
2
+ (6a,5 + 10: P+ (8
25 ag) )5 + 2“26+%‘762).}’24+ {3024"'9“4’
—(6a,s + 904, ) y, — (15a,, + 45067)}),2})(2

- ('.j”:o - ;ijao: )-\'4] +p8m -0, (63)

Here again c, is a constant of integration. Incidentally, neither ¢, nor ¢, are ne

for the determination of coefficients in the stream functions, but the values «

and ¢, are necessary if we wish to know the magnitude of the normal stress I

two layers.
o, must equate with o, at all x between — L and +L when y, is put equ

H, and y, =0 in eqns. (62) and (63). Performing this operation we immediatel
that:
f=0
(because 1fx¢ is the only term containing f). A consequence of this is:
e=ag,=06=0 (see eqns. (50), (42) and (45))
Application of these results on the terms multiplied by x? in eqns. (62) an
leads to: :
Ay = —M/Md= —md (here m=mn,/1,)
Equating the collection of terms multiplied by %2 in the two equations one ot
1, (30 + 9a4) = m(—3b + 6cH, + 15dH?),
and the relation:
2n,ay — ;= —m(2aH, + 3bH2 + 6cH} + $dH{) — ¢ + pigH
follows when the constant terms are collected and equated
Equation (67) with the expression for a; introduced (eqn. 43) gives:

aya= —mb+(2m—6)cH, + (5m — 15)dH?

From egns. (52), (45) and (65) follows:

4y = —mla+3bH, + (9 - 3m=Y)cH? + (15 — Sm™')dH?]
and from eqns. (51) and (65):

ays = —m(c+ 5dH;)

Now all coefficients in stream function y, are expressed as functions
coefficients a to d in stream function ¢,. The said relationships are:

— —aH? - bH} — cH} — dH;

a,,= —2aH, - 3bH2 — 4cH} — SdH;

ay = —m|a+3bH, + (9~ 3/m)cHi + (15— 5/m)dH;]
= —mb+ (2m— 6)cH, + (5m — 15)dH}

a

A4
ay = —md

a4y =2cH, + 5dH{

All other coefficients are zero.



*n applied to stream function y, this procedure leads to:
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$ equation is an exact differential, and
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mtiated with Teéspect to y and the result;
| derivative 0P/dy in eqn. (57). Thus:
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. )x4+3f(p)/3y (59)
quate with the term dP/dy in €qn. (57), i.e., the quan
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Ay =mq. (—

v =m(=2a~6by, - 6cy? - 1043 10ey! —1455) - p, g (60)
ipon integration yields:

M= 2ay = 3by7 ~ 200 — 3 _ 305 ) = pigy + ¢, (61)

Is a constant of integration,
can be introduced in eqn. (58) which in j i
. ts turn goes into .
stress parallel to y in layer 1 follows when: A G, and the
0x0y

1serted as derived from stream function y,.

€~ Pr=n(-2ay- 3byl - 6¢p? - Fdyf — 10ey; — 31y6
+(~3b+6cy, + 15dy? + 60ey? + 105/ ) x2
+($d~ 10ey, — 35/ )x* - 2fx6)

‘esponding procedure performed using stream

1 for the normal stress 9, in the top layer:

v: ~Pr=m, [2022 +2a,p, — 6a, p;, + (3a,, —

3“42)}’22
+(6a, + 10a,,) y2 + (Ba, + $ag, )i+ {3a,, + 9a,,

—(6a,s + 0ag, ) y, - (15a25 +45aq, ) y? }xz

- (%‘126 - %%2))‘4] trgy,—c,

(63)
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Here again ¢, is a constant of integration. Incidentally, neither ¢, nor ¢, are needed
for the determination of coefficients in the stream functions, but the values of Cl
and c, are necessary if we wish to know the magnitude of the normal stress in the
two layers.

0,, must equate with o,; at all x between — L and + L when ¥, is put equal to
H, and y, =0 in eqns. (62) and (63). Performing this operation we immediately see
that:

f=0 (64)
(because 7fx© is the only term containing f). A consequence of this is: .o
e=ag=as =0 (see eqns. (50), (42) and (45)) (65)

Application of these results on the terms multiplied by x* in eqns. (62) and (63)
leads to:

Ay = —n/M,d= —md (here m=mn,/n,) (66)
Equating the collection of terms multiplied by x? in the two equations one obtains:
12(3@ + 9ay,) =m,(=3b+ 6cH, + 15dH?), (67)
and the relation:

20,8y — ¢; = ~n,(2aH, + 3bH? + 6cH} + PdH!) — ¢, + p, gH, (68)

follows when the constant terms are collected and equated
Equation (67) with the expression for a4, introduced (eqn. 43) gives:

ay=—mb+ (2m—6)cH, + (5m— 15)dH} (69)
From eqns. (52), (45) and (65) follows: |
ay = —mla+3bH +(9—3m ) eH? + (15 — 5m~')dH?] (70)
and from eqns. (51) and (65):

ays=—m(c+5dH,) (711)

Now all coefficients in stream function ¥, are expressed as functions of the
coefficients a to d in stream function ¥1. The said relationships are:

ay = —aH{ — bH} — cH} — dH} (72)
ay = —2aH, — 3bH? - 4cH} - 5dH} (73)
@y = —m[a+3bH, + (9= 3/m)cH? + (15 — 5 /m) dni}] (74)
= —mb+(2m—6)cH, + (Sm — 15)dH} (75)
ay = —m(c+ 5dH,) (76)
a,o = —md (77)
ay =cH} + 3dH} (78)
a4 =2cH, + SdH? (79)

All other coefficients are zero.
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= H, introduced takes the form:

Tyy. =1 {( — -
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c=la+(3+3/n)Hb)/DH= 2Lyt Py
1 ]/ 1 H20+H1b (81)

1
and:

d=—-|a+(3+3
[a+(3+ /h)Hlb]/[D(5+5/h)H13]=:1—123a+ %b (82)

1
Here:

D=6/h—9—

/h—9 9/h2—24/hm+(3+3/h3—3/h+9/h2+12/hm)/(1+1/h)
h=H1/H2, m=mn,/n,; a, =1/D; .31=(3+3/h)/D' |
ay=~=1/D(5+5/h); B,= ~(3+3/h)/D(5+5/h)
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these equations the coefficients, ¢, d, A,,, A, etc are transformed to a and
the equations on p. 223, we find:

E,, =m (A, Hja® + B, Hib* + C,, H3ab)
and:
E.,=m,(A,Hia® + B H3b* + C,, Hiab)

for the instantaneous strain-energy rates referring to the portions of the sk
cuts through layer 1 and layer 2, respectively. Here the coefficients A
Cypy 1= 1, 2, are quite involved functions of material and geometric pro
the two layers, much too lengthy to present in full here. The interested
referred to the computer program, Appendix B, in which the symbx
corresponds to A, Estrbl to0 B, , Estrabl to C, Estra2 w0 A4,,, Estrl
and finally Estrab2 corresponds to C,,, Note that H, is also used in the
for layer 1; here the transformation H, - H, is “hidden” in the coeffici
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The rate of change of potential energy for the slice across the model is
integrating the “specific” potential energy rate, p;gv; over the cross-cut
using p, and v, for the part which cuts layer 1 and p, and v, for the pz
through layer 2; see éqns. (A5) and (A6) in Appendix A and see also p.
transforming ¢, d, aj,, dy; €lc 0 4 and b by use of the equations on [

instantaneous potential energy rate is expressed as follows:

EPOH = plg(APLH;a + BPlHlsb)
Epor, = 02 g(4, Hia+ szstb)

Here the transformation H, — H, in eqn. (85) is concealed in the coeff
and Bpl. The somewhat involved terms of the coefficients 4 p and Bp’, i
found in the computer program, Appendix B, where Epotal, Epotbl, I
Epotb2 correspond to 4, , B, , 4,, and B,, respectively.

A condition to consider when using the rate of energy change for d
coefficients is that the only energy available for deforming and moving
model is gravitational energy. Hence the theorem of conservation of ener
that the rate of decline of potential energy equals the rate of dissipat
viscous resistance, and the Gaussian principle of least constraint requii
rate of decline of potential energy shall assume maximal value under th
boundary conditions. Since potential energy change equals energy dissipz
strain we may also say that the rate of dissipation of energy by viscou:
assume maximal value.

The problem is accordingly to maximize the potential energy rate 1
function of the unknown coefficients a and b, and/or to maximize the s



use of vanishing ]
f vanishing shear strain ar top face and energy extremization

. f)rder to reduce the number of unknow
'tion of vanishing shear stress parallel to th
f=e=ag,=a, =0 and b

n coefficients further, we use the

e surface at y, = H, E i
. 2- Equation (49
= H, introduced takes the form: “

= —2 —:
772[( Ay +6a, —6(ay, — ap)H, - 18aysH? — 30“26”23)x

+(2ay5 + 10a, Hy ) x| =0 (80)
in this equation a.,., 4
23» etc. are t f
rmulas on p, 223, a;d 24 ransformed to q, b, ¢, and 4 by means of

the terms in the two i
: parentheses in front of x3
parately equated to zero, ¢ and d follow as functions of 4 and b: e

+(3+3/h)H,b] /DHZ= 2,4 B
| lea A, b (81)

_a+(3+3/h)H1b]/[D(5+5/h)Hl3] = %a+ %b (82)
1 1

h~9—9/n*—24 /hm + (B+3/*~3/h+ 9/h?

o +12/hm) /(1 + 1/n),

m=n,/1,; a=1/D; :31=(3+3/h)/D;
1/D(5+5/h); B2=—(3+3/h)/D(5+5/h)

ormul i i i
e als], coml.)l.ned \Ylth the expressions for a;; as functions of a, b, ¢, and
all coefficients in the stream functions and their derivatives t,o (; a;ld b

ve end up with only two unknow ici
n coefficients, a i
1ed by the method of energy extremiz his mepahese will be

strain-energy rate as well as the r
Unfortunately the energies require
_.full in Appendix A. Here only
ung the energies will be given.
}’stantfmeous rate of change of strain ene
strain energy rate (i.e., the energy rate

ation. To use this method, expressions
até of change of potential energy are
quite lengthy expressions and these are
a brief summary of the procedure for

T8y is obtained by integrating the
per unit volume),

82¢ )2 2 2
L e and g2 =, 0¥ _ 3%
( ayax T’IYX_V T’i(axz - ﬁ
‘tical slice of unit thickness

1 for the part of the slice
s layer 2. This leads to eq

pa‘rallel to the xy plane across the model, using
Whlf)h cuts layer 1 and M, and ¢, for the part
uations (Al) to (A4) in Appendix A. When in

225

these equations the coefficients, c, d, 4,,, 45, etc are transformed to a and b. using
the equations on p. 223, we find:

E..=n(A., Hia® + B, HSb* + C,, Hiab) (83)
and:
E.,=m,(A., Hia> + B, H3b? + C,, Hiab) (84)

for the instantaneous strain-energy rates referring to the portions of the slice which
cuts through layer 1 and layer 2, respectively. Here the coefficients 4, ., B, and
Cw.»’ i=1, 2, are quite involved functions of material and geometric properties of
the two layers, much too lengthy to present in full here. The interested reader is
referred to the computer program, Appendix B, in which the symbol Estral
corresponds to A, , Estrbl to B, Estrabl to C, Estral to A, Estrb? to B,
and finally Estrab2 corresponds to C,, . Note that H, is also used in the equation
for layer 1; here the transformation H, — H, is “hidden” in the coefficients 4,
B, ,and C,.

The rate of change of potential energy for the slice across the model is found by
integrating the “specific” potential energy rate, p;gv; over the cross-cutting slice.
using p; and v, for the part which cuts layer 1 and p, and v, for the part cutting
through layer 2; see eqns. (A5) and (A6) in Appendix A and see also p. 239. After
transforming ¢, d, a,,, a, etc to a and b by use of the equations on p. 223, the

instantaneous potential energy rate is expressed as follows:

n

Eoo, =p18( A, Hia+ B, H3b) (85)
E,o, =pg(4, Hia+ B, H3b) (86)

Here the transformation H, — H, in eqn. (85) is concealed in the coefficients A4,
and B, . The somewhat involved terms of the coefficients 4, and B,, i=1, 2, are
found in the computer program, Appendix B, where Epotal. Epotbl, Epota2 and
Epotb2 correspond to A, , B,, A, and B, , respectively.

A condition to consider when using the rate of energy change for determining
coefficients is that the only energy available for deforming and moving the present
model is gravitational energy. Hence the theorem of conservation of energy requires
that the rate of decline of potential energy equals the rate of dissipation due to
viscous resistance, and the Gaussian principle of least constraint requires that the
rate of decline of potential energy shall assume maximal value under the prevailing
boundary conditions. Since potential energy change equals energy dissipation due to
strain we may also say that the rate of dissipation of energy by viscous strain will
assume maximal value.

The problem is accordingly to maximize the potential energy rate treated as a
function of the unknown coefficients @ and b, and /or to maximize the strain energy



CONTOUR MAP
OF ELLIPTICAL BASIN AND INCLINE PLANE
b

Fig. 3. Contours fepresenting energy increasing from arbitrary values 1 to 9. Solid closed curve passing
through origin and the point P marks the intersection between the basin and the plane, P coinciding
with maximum energy on the intersection curve. The coordinates for the point P are the sought values
for the coefficients ¢ and 5. Example showing general principle.

rate also treated as a function of ¢ and b subject to the side-condition that
qul = E"q. The situation may be visualized (Fig. 3) when one realizes tl}at E(Y = E'(yl
+ Er72 descri.bes a guadric surface in the space defined by the axes E., a 'and b;
and £, =E_  + E ., describes a plane ip the same space, the axes for E_, and
E,, coinciding. Assuming that th-e E,,-or E,, axis is vertical and the a- and b axes
are horizontal one finds that E., =/f,(a,b) defines a basin whose lowest point
coincides with the origin of the coordinate system, and whose elliptical horizontal
cross-section area increases with height on the E-axis. The plane Epm = fpo.,(a,b)' is
generally inclined to the axes and contains the origin. The side condition E +E,,
=0 defines the intersection curve between the two surfaces. It is the maximal
E-value on this intersection we seek, and especially the a- and b values which
correspond to maximum energy rate. As demonstrated in Fig. 3 the extreme values
coincide with the condition (aa/ab)q=(8a/ab)p°,. Here subscripts ey and pot
refer to the partial derivative da/db of the strain energy function and of the
potential energy function, respectively. .

It is easy to see that one extremum-the minimum-—coincides with E=0,
a=b=0, but the maximum depends upon the inclination of the plane E'p0,=

feol(a,b) with respect to the E-axis, and upon the exact shape of the surface
E. =/f.,(ab).

It is convenient to put the energy equations:

4
= nl[(nl:2A(yl + AEYZ)aZHZ

E( = E(h + Etvz 5
y —{-(nl 2B +B(yz)b2H§+(n1:2C<7l+C¢yl)abH2l
: €
and: 4
E ol=Epol +Epol,=ng[(pl:2Apl+Ap2)aH2
% 1 2

+(pl:2Bp| + sz)bHZS]

in the simpler identical forms below:

: 248 + C, abH;
E(y=n2(A<ya%H;+ B(-yb H2 €y 2)
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It is convenient to put the energy equations:

: 2p74
E.=E., +E, =m[(m.4,+4,)d"H;

+ (M 2By, + By, )b*HS + (m1.:Cey, + Coy, )abH3 | (87)
and:
Epot=Epol| +Epozz=P28[(P1:2Ap,+Apz)”H; "

+(p,.,B, + B, )bH;|

in the simpler identical forms below: -
E, =mn,(A,,a}H} + B,,b>HS + C, abH3)
and: "
o= 028 ( Apora 3 + By H)

he identity of
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TABLE 1

Velocity u in cm/year at different levels at the ri
Ma=m =102 P, p=28g/cm’, H=5000m, N ish

ght hand vertical boundary of model. R =0.5,
eight in parts of H (see Figs. 4B, 5 and 6A)
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uy N
0.1516899015 04
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0.0078672487 0

instantaneous velocity field and stress field of the
(36) to (39) and eqns. (48), (49), (62) and (63) when
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cients. The instantaneous rate of
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- Fig. 4. Deformation of double-layer model with aspect ratio R, = 0.5 for layer 2. In B, C and D height of
layer 1 is exaggerated 10-fold to show the deformation of initially straight vertical markers. As the

computer does not print Greek symbols the viscosit
viscosity has been given in poises (P) and densit
at the right-hand initially vertical face. See also

y has been given the symbol Mu and density Ro,
y in g/cm?. Velocities in cm/yr refer to maximal values
Table 1.

H=5000M, R=. S5, Mu=10"22, Ro1=2.8

R MODEL g v durine 5-
SINOLE EAYE 1 after creep with unchanged initial velocity during 5-1

Fig. 5. Deformation of single-layer mode function (34) but with 2 orders higher degree, .

Compare experiment, Fig. 6A. Based on stream
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COhere';ce zl" n sin.lulalion Fig. 5. B. Spreading under own weight of rectangu a}r\lpte A
- 101 , Fig. 5. ' P
Sl;'eam umt:ty R = 0.5. Free slip at base (silicone body floating on mercury)
silicone putty. R =0..
4D.
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H=5000M, R=. S, Mu=10"22, Ro1=2. 8

SINGLE LAYER MODEL
Fig. 5. Deformation of single-layer model after creep with unchanged initial velocity during 5-10° vears.
Compare experiment. Fig. 6A. Based on stream function (34) but with 2 orders higher degree. x7-y°,

(A)

(B)

Fig. 6. A. Spreading under own weight of rectangular parallelpiped of viscous silicone putty R =0.5.
Coherence at base. Early stage of deformation shown. Note similarity between carly stage (A) and
stream-function simulation, Fig. 5. B. Spreading under own weight of rectangular parallclpiped of viscous
silicone putty. R =0.5. Free slip at base (silicone body floating on mercury). Note similarity with Fig.

4D.



Numerical results of the simulation

As numerical examples of the simulation of spreading double layer nappes the
following series of models, consisting of a 50 m thick basal sheet (layer 1) overlain
by a 5000 m thick layer 2 are treated. The density of both layers is kept at 2.8 g /cm’®
and the viscosity of layer 2 is kept at 10?2 poise (10%! Pa s), while the viscosity of
layer 1 varies from model to model. The instantaneous velocity field of models with

H2=5000M, H1=50M, R2=2, Mu2=10"22, Ro1=Ro2=2. §,
Ufree=, 5322, Vfrae=-, 2661

l

G —
Ui= .371187511657 U2= 471573249525
Ul= 1.058914560934 UD= .571187511852

Muts 1.E+17

SYRET77F1I06 U= _492II0019957
E+413 Ul= .9555995779124 b

WL T

NNN\N\NAVT /777777

Ul= (297204089063 U= | 448881623566
Mul= l.E+lw
C

NI,

Ul= .00485511944183 2= ..317204110044
Muls 1.E+Z d

ul= S5
Mal= 1.

H2

-L INITIAL STATE L e

an 7. Deformation after 5-10° years of creep of double-layer model with R, =2 assuming constant
initial velocity. Height of layer 1 in a, b and ¢ is 50-fold exaggerated to show deformation of initially
straight vertical markers. For explanation of symbols see Figs. 4 and 5; in addition: 10°22=10%, Ufree
and Vfree are velocity components at the corners y = H,, x =+ L if there was free slip at lh:a base.
When two values for u; and/or u, are given, one refers so the velocity at the layer contact at the front
face, the other u, refers to the edge at X =1L, ¥ = H,, while the other u; refers to the middle level of
layer 1. Note the change of deformed shape as a function of the viscosity of layer 1. With high viscosity
of the basal layer u, has maximum value at the top of layer 2, and v, varies so as 1o generate a convex
top boundary. Low Mul gives maximal u, at the base of layer 2 and maximal w, in the middle of layer
1. Because of horizontal tensile strain in layer 2 the top surface assumes a concave shape. For discussion
of these effects of an especially mobile basal layer see text pp. 38, 39. All velocities in cm/yr.
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Fig. 8. Deformation after 5-10° years of creep assuming uncha.nged initial velocity of do:ble l;xy;
aspect ratio R, =10. Only right-hand half of model shown. Helg-ht. c.)f layer l.exaggera_te. te'n o"
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excess of horizontal tensile strain in the back (middle) part of layer 2 (a). ’ljhe difference is shown
lack of variation of u, with height at the front face of layer 2 when Mul is small, and by the co

that in this model a lower viscosity Mul is needed to produce “extrusion flow” in layer 1, i.e.,
velocity here being maximum at intermediate levels.
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Fig. 8 Deformation after 5-10° years of creep assuming unchanged initial velocity of double laver with
aspect ratio R, =10. Only right-hand half of model shown. Height of laver 1 exaggerated ten fold in a.
b, ¢ and d. e is initial state. For explanation of symbols and definition of units. see Figs. 4 and 7. Note
that the strained profiles of the model show similarities but also significant differences when compared
with the shorter double layer in Fig. 7. The similarity is manifested by the increase of u, with height at
the front face (d), by the convex (though weak) top surface at low viscosity Mul (d) and by a weak
excess of horizontal tensile strain in the back (middle) part of layer 2 (a). The difference is shown by the’
lack of variation of u, with height at the front face of layer 2 when Mul is small. and by the condition
that in this model a lower viscosity Mul is needed to produce “extrusion flow" in layer 1. i.e.. by the
velocity here being maximum at intermediate levels.

selected aspect ratios (R;=L/H,) and selected viscosity ratios (Rm =1, /7,) are
computed. The deformed shape of the initially rectangular cross section of models is
shown, assuming that the initial instantaneous velocity was constant in the course of
an initial period of 500,000 years.

All pertinent results are shown in Figs. 4-15 and explained in the figure texts, the
instantaneous velocity at the front end of the models perhaps being the most
interesting result.

Extension of results by using simple scale-model rules

It is a consequence of scaling theory that the velocity field for models with
thicknesses, viscosities and densities different from those computed may be esti-
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mated by simple proportionality factors provided that the ratios between significant
parameters are the same as for the models computed.

. Tlllus, f(?r exe.lr.nple, »Yhen in a series of models all parameters are fixed except the
a lso }1te viscosities while, however, the viscosity ratio, R, is the same, then the
velocity at any corresponding point is i i ’

. ty inversely proportional t
A prop o the absolute

Similarly, if all parameters in the models—including the density ratio—are fixed
-except the absolute densities, then the velocity at an :
proportional to the absolute densities.

For variations in geometric dimension the rule of thumb is:
n"xodels all parameters including aspect ratios and the ratio betwe;e
_flx.ed except the absolute thicknesses and lengths, then the velocity
po.mts varies with the square of a defined linear dimension,. e
thickness. In this case the strain rate at corresponding points var,ies
defined linear dimension (Table 2).

Using the above rules the information presented in Figs. 4-15 can be extended to

y corresponding points is

if in a series of
n thicknesses, are
at corresponding
.g., the absolute
linearly with the

TABLE 2

Example demonstrating the second degree relation between geometric dimension and velocity. * R
py=p,=28g/cm’, H, /H, =001, n,=10" P 9, =10 P

H,, (m) uz (em/yo)
o 0.0864249627
1250 0.3456998510
7500 1.3827994038
<200 5.5311976153
10000 22.1247904614

* As may be readily checked, with a pocket calculator for example, these values show that a dou
the linear dimension—in this case the height—corresponds to a four-fold increase of the veloci
numerical relationship is very exact for the models under study.

any desired value of density, thickness and viscosity limited by the noted cons
as regards parameter ratios.

Strain in the basal layer

The rather complicated deformation of initially straight markers in laye
demonstrated in most models studied requires further comments. We may
that the strain in layer 1 is generated by the overlying layer since layer 1 is ge:
too thin to spread if not overlain by a heavy burden. The effect of layer 2 is tw
(1) On account of its weight it squeezes the subjacent stratum and ger
extrusion flow in the latter. This may be referred to as the “squeezing effect”;
account of the gravitational spreading of layer 2, horizontal tensile strain 1
transmitted to the underlying layer 1 since the contact is welded (coherent
may appropriately be termed the “transmitted tension effect.”

It is useful to be aware of these two distinct means by which layer 2 pr
strain in layer 1. The two effects generally occur together, but that does nol
that they cannot be analysed separately. In fact, one of the effects may »
practice occur without any noticeable contribution from the other. If the st
cumbent sheet is extremely viscous or rigid relative to the other it is unable t
and spread, but its weight will still squeeze layer 1 and generate extrusio
there. ‘

It is more difficult to “purify” the “transmitted tension effect” in the 1
double-layer models here studied. The reason for this is that the relative
viscosity required for gravitational spreading of layer 2 does of course not nu
weight and its “squeezing effect”. However, by selecting the proper viscosit
between the two strata it is possible to construct numerical models in wh
“transmitted tension” effect is the dominant one, see below.

In attempting to analyse the complex strain in layer 1 it helps to consi
aforementioned two effects separately. When studying the “transmitted te
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TABLE 2

Example demonstrating the second degree relation between geometric dimension and velocity, * R, =100.
p,=p,=28g/cm*, H,/H, =001, ,=10'" P 5, =102 P

H, (m) s lem/y7)
o 0.0864249627
1250 0.3456998510
2500 1.3827994038
<00 5.5311976153
10000 22.1247904614

* As may be readily checked, with a pocket calculator for example, these values show that a doubling of,
the linear dimension—in this case the height—corresponds to a four-fold increase of the velocity. This
numerical relationship is very exact for the models under study.

any desired value of density, thickness and viscosity limited by the noted constraints
as regards parameter ratios.

Strain in the basal layer

The rather complicated deformation of initially straight markers in layer 1 as
demonstrated in most models studied requires further comments. We may argue
that the strain in layer 1 is generated by the overlying layer since layer 1 is generally
too thin to spread if not overlain by a heavy burden. The effect of layer 2 is twofold:
(1) On account of its weight it squeezes the subjacent stratum and generates
extrusion flow in the latter. This may be referred to as the “squeezing effect™; (2) on
account of the gravitational spreading of layer 2, horizontal tensile strain will be
transmitted to the underlying layer 1 since the contact is welded (coherent). This
may appropriately be termed the “transmitted tension effect.”

It is useful to be aware of these two distinct means by which layer 2 produces
strain in layer 1. The two effects generally occur together, but that does not mean
that they cannot be analysed separately. In fact, one of the effects may well in
practice occur without any noticeable contribution from the other. If the superin-
cumbent sheet is extremely viscous or rigid relative to the other it is unable to yield
and spread, but its weight will still squeeze layer 1 and generate extrusion flow
there.

It is more difficult to “purify” the “transmitted tension effect” in the type of
double-layer models here studied. The reason for this is that the relatively low
viscosity required for gravitational spreading of layer 2 does of course not nullify its
weight and its “squeezing effect”. However, by selecting the proper viscosity ratio
between the two strata it is possible to construct numerical models in which the
“transmitted tension” effect is the dominant one, see below.

In attempting to analyse the complex strain in layer 1 it helps to consider the
aforementioned two effects separately. When studying the “transmitted tension”
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Fig. 10. Strain in layer 1 indicated by deformation of initially straight vertical markers shown at R,=05
and 1, and for selected viscosity-values in poises (P) of layer 1 while Mu2 is fixed at 1022 P. Note change
of deformation with varying viscosity. When Mul is large the tilted markers are straight or show a gentle

' curvature, convex toward the (upper) left. With decreasing viscosity the curvature increases but now
convex toward the (lower) right. As Mul decreases further the curvature sharpens and becomes pointed
at the same time as the deformed markers below and above the sharp kinks bend gently in the opposite
direction 10 the kinks. Note that the viscosity at the stage for “kinking” of the markers is less for aspect
ratio R, =1 than for R, =0.5. Compare also Figs. 11 and 12. See comment in text, p. 233 ff.

effect, we cancel out the squeezing effect by disregarding the weight of layer 2, but
at the same time assuming a contact-parallel longitudinal strain identical to that
which would have been produced by the gravitational spreading. Since the contact is
coherent the longitudinal extension is the same on either side of the contact, and it
follows that in layer 1 longitudinal layer-parallel stretch increases from zero at the

Fig. 11. A. Strain in layer 1 for selected viscosities al aspect ratio R, =20 which corresponds to
Ry = 2000 since H, = H, /100 and the layers are equally long. Mu?2 is constant =102 P. The switch of

marker curvature (see Fig. 10) occurs at Mul = 5-10° P compared with between 109 and 102¢

poise for
R, =0.5 and about 10'° for R,

=1. Velocities given in cm/yr at front end, 42 refers to upper right
corner of layer 2 (not shown in figure), and ul to the upper right corner of layer 1, i.e., to the contact
between the layers, and for Mul =1.5-10° also at level N, = 0.8 where ul reaches maximal value. B,
Same as 11A but the effect of additional viscosity values is demonstrated. Note especially the extremely
sharp cusps in the deformed markers at Myl = 5- 10 P. It is also worth noting that the level N at which

maximum ul is reached moves close 10 the centre when viscosity decreases. N gives the level in tenths of
H1.
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STRAIN IN LAYER 1;R2=200, Mu2=10"22
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_Fig. 12. With the extreme aspect of layer 1 in this example (R, = 20,000) the switch of curvature in the
deformed markers occurs at Mul between 3-10'3 and 5-10' P, and the sharp cusps develop at
Mul =5-10'2p; compare Figs. 9 and 10. ul is given in cm/year at front face. For Mul £1.5-10%3
maximum ul is also given, occurring at levels N = 0.8, 0.7 and 0.5, respectively. It is interesting that the
cbmputer—plotted figure indicates that shear at layer contact vanishes (the markers are normal to the top
surface of layer 1) when Mu! is between 1.5- 10" and 2-10"3 p (sec also Table 3).

contact with the rigid base to maximal value at the contact to the spreading layer 2.
It can be demonstrated that a gradient across the layer of layer-parallel longitudinal
strain causes initially straight passive markers not only to tilt but also to bend with
the concave side of the curvature facing in the direction of motion, (see Fig. 13).
This effect is detectable in some of the models computed in which the viscosity ratio
happened to be sufficiently favourable for a certain dominance of “the transmitted
tension” effect. This would mean relatively high viscosity of layer 1, thereby
reducing the squeezing effect (see, e.g., Figs. 8, 10 and 11). However, the models
studied were intended to illustrate the “lubrication” tendency of a relatively soft
basal sheet in the problem of thrust motion. Hence all models computed so far have
basal layers less viscous than the superincumbent layer. For illustration of the
“transmitted tension” phenomenon it is desirable to select viscosities for the basal
stratum which are higher than the viscosity of the layer above. An example of this is
presented in Fig. 15. In this figure not only does the longitudinal strain increase
across the stratum from base to top, but there is also a positive gradient of the
longitudinal strain along the layer from back to front. This means that the gradient

Fig. 13 Deformation of straight marker b to / caused by a gradient arallel to the marke¢
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Fig. 14. Extrusion flow in layer 1 caused by the “sque.ezing e}rct" .of layz;: (;le:ht::nw:] tl:lzvl:
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2. With the extreme aspect of layer 1 in this example (R, = 20,000) the switch of curvature in the
ned markers occurs at Mul between 3-10"* and 5-1013 P, and the sharp cusps develop at
'5-10'2P; compare Figs. 9 and 10. ul is given in cm/year at front face. For Mul <1.5-10"3
um 1l is also given, occurring at levels N = 0.8, 0.7 and 0.5, respectively. It is interesting that the
ter-plotted figure indicates that shear at layer contact vanishes (the markers are normal to the top
: of layer 1) when Mul is between 1.5-10'% and 2-108% p (see also Table 3).
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Mul=5+10"18 M,2=5+10716 R!=500

Fig. 15. The * transmitted tension effect” in layer 1 caused by horizontal spreading of layer 2 (not shown)
and the transmission of longitudinal strain across the coherent boundary. Note the curvature in the
deformed markers as caused by the strain increasing from bottom to top as well as from the back to the
front. The vertical dimension is exaggerated by a factor of 90 in this figure. Compare with Fig. 13.

of the strain across the layer becomes steeper as the front is approached (since strain
is zero at the base); a condition which explains why the curvature of the deformed
markers is accentuated in the frontal region. (Incidentally, the increment of layer-
parallel stretch in the frontal region in layer 1 is in good agreement with the strain
in layer 2 in models with relatively competent basal layers, see, e.g., Figs. 11 and
12.) As pointed out above, the “squeezing effect” can be readily demonstrated in its
“pure” state by selecting a rigid or highly viscous overburden. With vanishing
spreading of the overburden layer-parallel stretch is zero both at the top and bottom
of layer 1 and maximum tensile strain will be in the middle of the layer. This is well
demonstrated in Fig. 14 in which the perfect symmetry of the “bulge” of deformed
markers should be compared with the unsymmetric “bulge” in models allowing
squeezing and tension transmission to occur with comparable intensity.

It is clear from the above discussion of the longitudinal strain gradient that the
curvature and the extreme cusps on the markers in Fig. 14 and other examples arise
from the gradients from both edges to the centre of layer parallel longitudinal strain.

At certain relations between the viscosity ratio and the aspect ratio of the model
the shear strain vanishes at the boundary between the two layers; see Table 3. When
this happens the second layer moves as if there was no friction at the base. If the

TABLE 3

Relation between aspect ratio R, and viscosity ratio UIVATE

at which the shear stress vanishes at layer
1/layer 2 contact

. Ry, m/n T N2
0.5 40-107* 4 .10'8 1022
1 25 -1074 2.5 .10 10%
2 43 .10 4.3 .10 1022
5 3.5 -107° 3.5 -10'° 102
10 76 <1077 7.6 -10%5 102
20 1.85 1077 1.85-10% 10%
50 29 -107* 29 -10" 10%

100 74 -107° 7.4 -10" 10%

200 1.9 -107° 1.9 -10"? 102

viscosity of layer 1 is less than that given by this critical \{alue,'lhe flow in la);
generates a horizontal pull on layer 2, the pull being maximal in the centre o

nappe.

MIz
PROSPECTED DEVELOPMENT OF A STREAM FUNCTION-ENERGY EXTREMIZ
METHOD

It is obviously a serious limitation of the combinf:d “stream funculon.-enefr'ii
tremizing” method presented here that only the instantaneous ve o}cilty i
calculated. The goal for a user of the method must be to follow .t e comf1
evolution of the deforming process—in our case .the complete hlstlc?rk)l' ;)
spreading viscous “nappe”. It is easy to see. tha't lhl.S may be accom;;.ls. :2 y
step-wise procedure, assuming that the velocn).' field is constant .fo.r ‘a l1mC1i :
interval and then calculating a new velocity field based on the mm'al y' e' ol
model, the new velocity field giving rise to further deformation which in its
produces an altered velocity field that is used to .c.alculate the next ste
deformation, etc., etc. The new velocity field characterizing a deformed state o
model is based on new values of the coefficients in the polynoml.al stream func
To obtain the new values of the coefficients strain- an'd potential energy rr.1u
calculated by integration over the deformed cross _sectlor} of the model, ’usmi
formula for the “specific energy rate” as regards the strain energy, but calcxfj
the potential energy change by a method differer?t from the one used ablovedc'
infinitesimal instantaneous state. Now the potential energy must be calculated
end of the first step, using the formula:

Epon =P8 f f ydxdy

the boundary of the deformation profile being defined by the collection of poi
y given by the formulas:

X =x,+ ult
and: |
y =y, + oAt

Here x, and y, are position vectors for the initial profilef boundary ancflf.tlfe vtc;
components u and v are derived from the stream funcflon whose coefficients
not yet been determined. At is an arbitrary short time m'terval.

The change of potential energy during the interval At is then:

AEpm = Epml - EpolO

where:

Epoo= pgffyaxay
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viscosity of layer 1 is less than that given by this critical value. the flow in layer 1
generates a horizontal pull on layer 2, the pull being maximal in the centre of the

nappe.

PROSPECTED DEVELOPMENT OF A STREAM FUNCTION-ENERGY EXTREMIZING
METHOD .

It is obviously a serious limitation of the combined *‘stream function-energy-ex-
tremizing” method presented here that only the instantaneous velocity field is
calculated. The goal for a user of the method must be to follow the complete
evolution of the deforming process—in our case the complete history “of “the
spreading viscous “nappe”. It is easy to see that this may be accomplished by a
step-wise procedure, assuming that the velocity field is constant for a limited time
interval and then calculating a new velocity field based on the initially deformed
model, the new velocity field giving rise to further deformation which in its turn
produces an altered velocity field that is used to calculate the next step of
deformation, etc., etc. The new velocity field characterizing a deformed state of the
model is based on new values of the coefficients in the polynomial stream function.
To obtain the new values of the coefficients strain- and potential energy must be
calculated by integration over the deformed cross section of the model. using the
formula for the “specific energy rate” as regards the strain energy. but calculating
the potential energy change by a method different from the one used above for the
infinitesimal instantaneous state. Now the potential energy must be calculated at the

end of the first step, using the formula:

E = pgffyaxay

the boundary of the deformation profile being defined by the collection of points x,
y given by the formulas:

(95)

x = x,+ ulr (96)
and:
y =y +vAt (97)

Here x, and y, are position vectors for the initial profile boundary and the velocity
components u and v are derived from the stream function whose coefficients have
not yet been determined. Ar is an arbitrary short time interval.

The change of potential energy during the interval At is then:
AEpot = Epoll - Epo!O (98)

where:

Epo0= pgffyaxay (99)



eans 1'm-eg.ratlon over the initial profile. AE,, is to be equated with E._. As, and
the optimizing method described above (kee sirain4> A1

! ne ping At constant) leads to ina-
tion of the coefficients in the stream function. ) determina

Te i
- msl[s havs shown that this procedure leads to complications when it comes to
1 .
inp i leng t efrate_of energy change in attempts to determine the new coefficients
stream function. Work is, however, in progress trying to solve this problem

APPENDIX A

Applying the expressions;

au au a
€e=— and y=|H% 4%
0x n Y (8y+ax)

Lo eqn. (34) we obtain the strain energy rate per unit volume:
b =m(ded+ 7)) (A1)
which upon integration over the cr i
oss secion 0 < x < L, 0 <y < H, gives th i
energy rate for that part of the cross section slice which cut_s la;/er 11'g M
E=m[(*$R, + $R}) Hia® + (%R, + LRR})HED?
& 32 2
(SR + BRI+ BR + 4R]) HYc? + (10 R 4 1R} +12R}
+ l-;‘OOR7 Hl()dZ 3 5
: :0 1) 3+(12R1+4R1)Hlab+(%Rl—%“Rf—%Rf)Hf’ac
W0p _ — aRS
($R, — 10R} ~ 4R}) Had + (16R, + 6R} — 2R3) H/be
+ mR -8 5 8 5
(3°R, ~ 8R?) Hfbd + (20R, + 20R3 + 15R} + ¥ R]) Hicd] (A2)

In the same way the ener
gy of the part of the cros i i i
through layer 2 is derived from stream function (35): > section slee which cuts

S 2 g2
E, =mn, [4a22H2R2 + (%R, + R} ) a3 HY + (¥R, + 4R} )a3, HS
64 4 p3 | 2
T (TR + $RY+ ¥R+ 4RY)ad HE + (A0R, + 190R3
+ 12R5 100 p7 2 10
>+ SR} ) a3 H® + 12R3a2 HY + (4R3 + 2R3 ) a2, HS

+ 3

ap(8ay Ry H +8ay Ry HE + 8( R, — R3)a, HS + (8R, — ©R? )a, HS

2 26442
+8R3a,H?) +a 12 3 >
4Oz wH) 3 23[( Ry+4R3)ay H + (4R, - SRS~ §R3)ays HY

+ (R, = 10R} ~ 4R3) ay, H] — 8R%a, H? + 4R3a, H; |
+ a5, {(16R, + 6R3 — ¥R} )a, H] + (18R, - 8RS )a,  HE
_ 3 s :

12R3ay H3 } + ays {(20R, + 20R3 + 12R5 + ¥R a,  HY
_ 3 5

(10R3 +12RS ) a,, H] — (24R3 - ¥R3)ayHS)
+as{ —(16R3+ 16RS ) a,, HY — (30R3 - 12R3)a, Hj }

3
+12R}a,a,, H;) (A3)

The strain energy rate for the total cross section slice of unit thickness thro
the model is then:

' E<1 = E(‘n + E‘h (

The rate of change of potential energy for the unit slice folows upon integra
of the expression:

épo = P;gUOX0y  (seealsop. 239). (

across layer 1 when i is 1 and layer 2 when i=2. Here the vertical velc
component is derived from the appropriate stream functions (34) or (35). '
procedure leads to the potential energy rate for the whole unit section across

model:
Epo = Epoll + Epoxz = P1g[ ~(YHia + FHb+ tHe + tH/d)R,

pot
2 3 4
+ (%Hf’c+ ,—52-H17d)Rf] + ng[(H2a21 + %Hzazz + %Hzazs
5
+ %stau + %Hzéazs + %H;aze)Rz + (H24‘141 + 3Hja,
6 3
- $Hya,s — 1_52H27“26)R2]

R, (i=1 to 2) is the aspect ratio, L/H,; of the layers.

APPENDIX B

10 ' "COMEBSONAFW"

20 'A plotting,printing program for double-layer spreading nappe with vanishir

shear stress at top surfacejvalid for initial instantaneous velocities

30 'Theory and program (HFbasic,2, l:computer HF9816s) Hy Hans Ramberg,Uppsala
40 'Adjustment-if any-of viscosity,layer thickness,density {(lines490,&600) or |
velocity (line 230) must be don prior to pressind‘"RUN“

S0 'Scale values (line 280) are ggnerglly itnput aﬁter start but may even be 17

rted prior to start

60 'To start program put on the plotter and press i‘F\'UN“
A i

80 'The two polynomial STREAM FUNCTIONS are: i
G !Psi1=—(AY*2+BYh3+CY“4+DY*5+EY*6+FY“7)X+(Cy“2+5 ADy T E+10/ZEY " 4+14/3Fy TSI T
Ey"2+7/3Fy"3)»n"5 : 1

100 !'Psil (A?l+A22y+923y“2+A24y“3+A25y“4+A26yﬁ5)x+iA41+A42y—(A25+51961)y”2-5/
A26+AL2) Y)Y "I+ (ALL+AL2Y) xS

110 ! . ‘
120 'H1,HZ are thicknesses,Rh=H1/HZ,Ls length,R2(INFUT item!)=R=L/H2,R1=L/H1,I
+R02 are densities,Rro=Rol/Ro2,Mul,Mu2 are ViECDSiFiES,Rm(INPUT item')=Mul/Mu
130 ! L [
140 Gr=acceleration of gravity, Ul,V1i,U2,V2 are hBri:ontal (U) and vertical
velocity compornents in layer 1 and 2
150 ! : !
160 'Ufree,Vfree are velocitis at frént face of fr}e—slip model 3 X1,Y13X2,Y2 a
position vectors in layer l,.resp.layer 2;N1=X/L,Ni;}=Y/H in lines 1470,1490 ff.

170 ' are normalized position vectors

180 ! i

190 ' If hight is in cm, density in g/co~Z, Gr in em/s™2 and viscosity in pa
then velocity is in cm/yeariwith hight in m, densi}y in kg/m"3, viscosity in
200 ‘Fascal s and Gr in @/s™2 then velocity is in eter per year

210 !

220 FRINTER IS 705 '(705 is really & plotter:HF7470A)

230 PRINT “IN; IF,VS2;"!This prepares for FLOTTING, and specifies FPEN VELOCIT
240 TRACE FAUSE
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N energy rate per unit volume:

| (A1)
€ Cross sec.twn 0<xx<L,0 =y < H, gives the strain
Cross section slice which cuts layer 1:
(3R, + 2R}) Hop?
64 3
+ (%R, + 12R3 ¢ BRI+ 4R])HE2 4 (“9R] + 190R3 4 19 ps
+ 100 p7 10 42 s l
T2R]) HY42 ¢ (12R, + 4R})Hiab + (%R, — R — R}) Hac
N “ i , 5 5% 1
(PR, ~10R? - 4R}) H/ad + (16R, + 6R3 — BRY)Hbe
+(1°R, — 8R?
(120R, 8RY) Hibd + (20R, + 20R} + 15R; + #R) Hicd | (A2)
1

the same way the ener
. gy of the part of th
'gh layer 2 is derived from Stream f .

M2 [4a§2H22R2 + (%Rz + §R3)053H;+ (35
+ (%R, + TR+ 2R3+

5
FI12R; + RY)aZ HIO + 12R
+a,, (8a23R2H23 +8ay R, HY + 8(R

+8Rja., HY) + ay|

_— 3
RR2auH}} +ay {(20R, + 20R5 + 12RS + 2 R7
—(10R2 H
(10R} + 12R%) a,,, 1] - (24R3 - FR3)a,HE)
+ay{—(16R3 + 16RS )a,, HY — (30R3 - 12R%)
2

+ 12R3“41”42H25]

) 02R2+4R9auh?+(%Rz—§R3—
+ (%R, - 10R} - 4R3)a, H) — 8R3
+ay {(16R, + 6R3 — 2R3)

. S$ section slice which
unction (35): e

6

‘R2+4R%)‘1224H26
4p7Y) .2
7R2)“25H28+(%R2+1700R3

3.2 174

2aHy + (4R% + J?Ri)aizH{’

2= R3)ayHj + (8R, - TR as Hy

gRg)astzf’
a,, HY + 4R}a., H;]
ayH) + (1R, - 8R3 ) ay,s HE
2)‘126”29
‘141H27}
(A3)

241

The strain energy rate for the total cross section slice of unit thickness through
the model is then:

Ecy = Et'n + E“iz (A4)

The rate of change of potential energy for the unit slice follows upon integration
of the expression: '

épor = P;80;0x0y  (see also p. 239). (A3

across layer 1 when i is 1 and layer 2 when i=2. Here the vertical velocity
component is derived from the appropriate stream functions (34) or (35). ]"his
procedure leads to the potential energy rate for the whole unit section across the
model:

Epou = Epon + Eporz = 18] — (YH{'a + §Hb + Y Hfc + {H/d )R,

+ (_%Hf’c + %Hﬂd)R%] + ng[(szazl + Y H3a,, + tHjay,

+ §Hjay + sHjays + %H‘Zazs)Rz + (H;au + jH3a,,

— §Hjays — 1_52H27‘126)R32] (A6)
R, (i =1 to 2) is the aspect ratio, L/H; of the layers.

APPENDIX B

10 ¢t "COMEBSNAFPW"

20 'A plottinag,printing program for double-laver spreading nappe with vanishing
shear stress at top surface:;valid for initial instantaneous velocities

30 'Theory and pragram (HFbasic.Z,ljcomputer HF9816s) By Hans Ramberg.Uppsala

40 !'Adjustment-if any-of viscosity,laver thickness,densitw lines470,600) or pen
velocity (line 230) must be don prior to pressinag "RUN"
S0 'Scale values (lineg 280) are generally input after start but mav even be inse

rted prior to start
60 'To start proaram put on the plotter and press "RUN"

70 !

80 'The two polynomial STREAM FUNCTIONS are:

O 'P5i 1=—(AY 2+RYCIHCY 4 4DYSHEY L+FY 7)) N4 (Cy 245/ 3Dy T34 10/ IEy 4414/ TFVS) w3
Ey"2+7/3Fy~3)%n"3

100 'Psi (AZ1+AZ2y+A2Sy " 2+AZ4y 3+AZSy "4 +AZ6Y "SI x+ (AG1+A42y— (AZS+5XA61) vy 2-5/3k (

AZE+ALD) y ") n T+ (AL1+AL2Y ) x5

110 !

120 'H1,H? are thicknesses,Rh=Hi/H2,L= length,RZ(INPUT item!)=R=L/HI,R1=L/Hi,Rol
sROZ are densities,Rro=Rol/RoZ,Mul,MuZ are viscosities,Rm(INFUT item')=Mul/Mu2
130 !

140! Gr=acceleration of gravity, U1,V1,U2,V2 are horizontal (U) and vertical (V)
velocity components in layer { and 2

150 !

160 'Ufree,Vfree are velocitis at front face of free-slip model:X1i,Y1:X2,Y2 are

position vectors in layer l,resp.laver 2iMi=X/L,Ni=Y/H in lines 1470,14390 f¢.

170 ! are normalized position vectors
180 1
190 ' If hight is in cm, density in g/cm™Z, Gr in cm/s™2 and viscostty in pois

then velocity is in cm/yearswith hight in m, density in kq/m "3, viscosity in
200 'Pascal s and Gr in m/s™Z then velocity is in meter per vear

210 !

220 FRINTER IS 705 !'(705 is really a plotter:HF7470A)

230 FRINT "IN IF,VS52:;"!'This prepares for FLOTTING, and specifies FEN VELOCITY
240 TRACE FAUSE



250 'When "PRINT SC-——,———, -
lowed by “EXECUTE
260 'I+ scale valu
when line 280 sppe

p . --—"etc. appears on screen press "EDIT, 280" fal
and line 280 will appeat

are inserted prior to start then press "CONTINUE" directly
s,else:

270 !Insert desired scale values, (considering the R2,Sym and Rm commandes to be
INPUT later') press "ENTER" followed by "RUN"

280 FRINT "SC-50,30,0,72"!'This is an example

L]

tAfter "RUN” is pressed, "FRINT "S§C-—,=—,-—,~—" again appears on screen, and
AW with numbers i1nsertec

J10
320 !'Then press "CONTINUE" which puts"RE,Rm,Ini,Sym,Eou,Layl,LayE,Print,etc" on
sCcreen; insert values for R2,Rm.etc. and press "CONTINUE" snew to start plotting

14

40 ! Together with the input values for R2 and Rm the following "yes/no" or 1/
rero choices are possible:
telo] tIni =0 plots tnitial praofile,Ini=1 plots deformed profile,Sym=-1 plots sym

metric profile,Sym=0 plots right hand half of profile
Q H
370 'Bou=1 plots top boundary first,Bou=0 plots base first: Layl=1,LayZ2=0,plots

laver 1 anly,Lay2=1,Layl=0 plots only laver 2,Layl=1l,Lay2=1 plots both layers
) 1

- t'Printing of velocities follows plotting if Frint is put =1 and Velfro and

Veltop ere given values O or 1:Print=1 and Velfro=1,Veltop=0 gives the velocity
400 !'at the front face of both layers:;Print=1,Velfro «Veltop=1 gives the veloci
ty at the toup bouwndary of both lavers:Frint=1 and Vel fro=0,Veltop=0 prints the
410 'velocity throughout bouth layers. Frint=0 prevents velocity to be displayed
or printed: It Layl=Lay2 =0, Print=1 and Vel fro=0 or 1.Veltop=1 or O then

420 !velocity is printed without activating plotting

430 Lt

440 !For plotting of both upper and lower boundaries press "RUN" and “CONTINUE"
directly after the firct plotting or printing ends,then make input for "R2,Rm,
450 'Iny etc”, but ncw using the alternative command for Bou,and press CONTINUE
again
450  INFUT ”RE.Rm,In1.Sym,Euu,Layl,LayE,",Rz,ﬁm,Ini,Sym,BDu,Layl,Lay2
470 INFUT ”Print,Uelfro,Veltop“,Print,VelfrD,VeltDp

480 COM REAL Hl,H?,R.RQ,RI,Rh,Gr,Rol,RQE,RrO,Mul,MuE.Rm,Den,Epota,Epotb,Estra,
Estrb,Estrab

490
SO0 < 2
S10 Rh=H1/HZ
S20 R=R2

8530 L=RXHZ2
S40 R1=R2/Rt
S50 Gr=98t'cm/s"2
S60 Rol1=2.8'g/cm
570
=80 8
S90 Mul=MuZXRm
&00 Rro=Rol/RoZ2

&10 CALL Energyfactars

&20 L

630 !'CALCULATION OF THE COEFFICIENTS A By .., A41,A42 IN THE STREAM FUNCTIONS
Psi (1) AND Psi(2) FOLLOW

&40 Q=Epotb/Epata

&50 Phi=(2kOQkEstra—Estrab) / (2ZXEstrbXxH2-QXEstr abxH2)

&60 A=—(Epota+Epotb*H2*Fhi)/(Estra+E5trb¥H2“2*Phi“2+E5trabe2¥Phi)

&70 E=FhixA

&80 €=(A+(3+3/Rh)XH1%¥B) / (DenXH1"2) '“Den"” is defined line 1760

&90 D==(A+ (Z+3/Rh) XH1XR) / (Denk (S+S/Rh) *kH1™3)

‘700 AZ21=~{AKH1"2+BXH1"T+CKHL"4+DXH1"5)

710 22=~ (2KAKHL1+IXEXH1 " 2+4XCAH1Z+SKkDKH14)

720 A23=-RmX (A+3XEXH1+ (F=-3/Rm) KCXH1 "2+ (15-5/Rm) XDXH1"3)

730 AZ4=—FmAB+ (2ARM-6) XCkH1+ (SKRM—15) kDKH1 "2

740 A2S=-Rmk (C+S%xDxH1)

750 26=—Rm*D

760 A4 1=CXxH1 " "2+5/IxDXH1 "=

770 A42=2ACKXH1+SKkDXH1 "2
*780  IF Layl=0 THEN 1100

790 THEN

800 FRINT "LT2,1" 'Commands plot with dashed line (faor initial profile)

810 ELSE

820  PRINT “LT" !Commands plot with solid line (for deformed profile}
830 END IF

cm,change as needed befar start
Cm,change as nedded ——- """ ——

i

«change as needed befor start
change as needed - e
‘Fois,change as needed -~-—— "" ———

Q = TEF .1
84Q FOR M=Sym TQ 1 S By a
half profile,Sym=~1 plots full symme

S0 IF M=Sym THEN - i
SZO FOR M1=10%R2¥Sym TO 10¥R2 STEF R2/10

'Sym is input as Q
tric profile

tom (If Bou=0) boundary of layer 1

870
B8O
870
7xIni
{00
10
920

USERS UNITS; the velocities are multip

930
40
950
&0
?70

780
90
1000
1010
7xIni
1020
1030
1040
1450
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210

26*Y2“2)*X2“3)*3.1¥10“7*Ini

1220

DeD-SKARLRY 2 R) KX2TL) K3 1¥10

1230
1240

ity is multiplied by a periode of 10

in layer 1 Eecause of t
1

X1=M1XH1 XK1/ (10XRZ)
Y1=H1*Bou .
U1=((2*9*Y1+3¥B*Y1*2+4*C*Y1

V1= (- (AKY12+EXY1"3+CKY1"4+DXY1

X=M1+U1X10
Y= {10kRh+V1%10) XBou

ERINT “PA",X,",",Y,"3PD;SF13"
NEXT M1

PRINT “FU;"

END IF

i initially straight
FOR N1=C TD 10 STEF .2 !This draws the in a S O v enerally be

he small Rh value the vertical
greatly exaggerated when plotting structu
X1=R1%XH1%xM

Y1=N1%H1/10
Ul=( (2XAXY1+3XEXY1

V1=(—(A*Yl“2+EIY1“3+C#Y1”4+D*Y1”5)+(3#C1Y1”
X=10XRXM+UL1X10 )
Y=N1*Rh+V1%x10 !See 920
PRINT “FA",X,",",Y,";FD:iSF1;
NEXT N1

FRINT "PUs"“

NEXT M

FPRINT "PUsz"

IF Lay2=0 THEN 1420

IF Ini=¢ THEN i
PRINT "SF1;LT2,1"!See BOO
ELSE )
PRINT "SP2;LT"!See 820

Egg ;zSym TO 1 STEF .1 'Here starts preparation for
IF M=Sym THEN : )

FOR NEZIO*RE*Sym TD 10%RZ STEF RZ/10
X2=MZXH2XRZ/ (10XR2)

Y2=H2¥FEou i S
U9=(—(A22+2*923XY2+$*A24¥Y2“£+4*A;5*(-

Vo= (A2 1 +AZ2KY2+AZTRY 2 2+A2AKY 2 T+AZSKY D A+AZGRYZT

~7%1ni

X=M2+10%U2 ) ) o aaul
= 2 +10%Rh ' HZ is taken q q
Y= (10+10%V2) XBou e eTte |

res in laver

TLHRATLAYZCA) KX T+ (—AAZH2RAT

S+ (3KA41+3KALDNYZ

or -1,Sym=0 plots right hand

‘{This draws the top (If Bou=1) or b

3+$!D*Y1”4)*X1~(21C*Y1+5XD*Y1*2)*XX“Z)IS.l*l
”q)+(3*C¥Y1“2+5!DXY1“3)*XI“Z)XS.l*lO“?*ln

{H? is taken to equal 10 USERS UNITS so that Hi= 1C¥
ies lied by & 10-units time periode

vertical marke

1

“7+4XC*Y1“3+SXD*Y1”4)*Xl—(ZlCin+SlD*Ylﬁ2)*Xl“;)l?.l*

”2+5*D*Y1“3)!X1’2)*3.1*10’7*h

plotting of laver

4& 10 USERS UNITS and the v
|

1250 PRINT "PA" X", " Y, "iFDs

1260 NEXT M2

1270 FRINT "PUs" ' )

: i initia g i t er

1500 ggg ;i O TO 10 STEF -5 'Now follow plottingjlaf imitially straight v
1290 { N2= - !

markers in layer 2

1300 X2=R2KH2XM i .
=1 =N2XkH2/10 SRR | 1 N e - —A42ADXATSEYT
14:2 53 T&T::ii”*A°3*Y7+3*A24*Y2'2+4IA25¥Y;'¢+u%'“61Y2 4) kX2+ (-A

1320 2=(—(AZ2+ 2AAZAY -~ X | ' - '
26*Y2A2L*Tii?lzi;;:lzaziisi THARSAYZ A 1°*Y2*5+(3*A41+3*A421Y2 XA
1330 V2=(AZ 22AY2HAZTIAYZ . l
2i2—5*ﬁ26*V2”3)WX2“2)*3.1*1. !

1340  X=10XkR2XkM+10%U2 i

1350 Y=10kRh+N2+10%V2 'SEE 1240
1360 FRINT "FA",X,".
1370 NEXT N2

1380 PRINT “PU;"
390 MNEXT M i ) - ]
1:33 FRINT "PU;SPO;"!Here plotting ends and pri
according to the commands below

1410 L ’
1420 IF Print=0 THEN 1710

14Z0 Ep5i=R02*Gr*H2/(B#Nu2)

ng of velaocities etc star



> lWhen “FRINT SC———,———.———,———“etc. 4Ppears on screen press "EDIT, 2gon fol
ed by "EXECUTE", and line 280 will appear
'V IF scale values are ins

erted prior to start then press
n line 280 [PpEars, else; )
'Insert desired scale values,
UT later!) press "ENTER'
FRINT ”SC—SO,S0,0,7
(]

"CONTINUE" directly

(cqnsidering the R2,Sym and Rm commande to be
followed by “RUN"

2¥!'This is an example
'"After "RUN” is pressed,"ERINT "SC——,——,——,——" again appears on screen, and
with numbers inserted et

v

‘Then press “conTinyg» whitkh puts g
/BNy insert values for R24ﬁ{,etc.
) 3

,Rm,Ini,Svm,Eou.L

- ayl,LayE,Print,etc" an

and presg "CONTINUE" anew to start Plotting
' Together with the inputy
choices are POossible:s
'Ind =g plots
ic prmfile,Sym:
L)

avalues for R2

and Rm the fullqwing "
initial pr:"

O plots g

yes/no" or 1,
ile,Ini=y plo

ts deformed
t hand half o

Profile, Sym=-y Plots sym
f profile

'Rous=1 plots
2r 1 anly, |,
[

top bbundar irst, Bou=0 plots

bace first;
s, only laver

Layl=1.Lay2=O,plots
2,Lay1=1,Lay2=

1 plote both layerg
!!Printing of velm¢itiesL

Poare given values 0 gy 1l
at the front f

the top bound
velocity throughout
rinted; 1+ Lay1=Lay2 =0

f SOt
velocity is printed]withuﬂ
o

-1Ng if Frint is put =g and Vel fro and
1. Veltop=o gives the velocity

he veloci
D Veltop=o pPrints the

! ik
s
Tor RPlotting of bath uppe
y after the firstiplott; E
nietc", put now using t‘ﬁia

nd 1 ower boundaries pPress
or printing ends, then
lternative command for

"RUN® ang "CONT INUE"
make input for ”R2,Rm,

Eou, and Press CONTINUE
NFUT ”RZ,Rm,Ini.Sym,Eou,Lay],LayZ,",RE,Rm,Ini,S
NPUT ”Frint,VelFrD,Veltnp"ﬂPrint, .lfro,VEltDp
COM REAL Hl,HQ,R,RZ,RI,Rh,Gr,RDl,RoZ,Rro,MuI,MuE.
Estrab

ym,Bou,Layl,LayZ

Rm,Den,Epota,Epotb,Estra,
!cm,change 45 ne.
[

eded befor start
=, change

45 nedded —-.— un

change as needed befor start
change as needed -~ wuo

schange ag needed -

'Foig = "n

U1=MuZkRm
ro=Rol/RaoZ?

ALL Energyfactnrs
t

ALCULATION OF THE CDEFFICIENTS AR
AND FPsi (2) FOLLOw
=Epotb/Epota

xi=(2¥QlEstra—Estrab)/(E*EstrthE
=—(Epmta+Ep0th*H2*Phi)/(E
‘Fhi xa
¢A+(3+3/Rh)XH!*B)/(DED*HI“Z) '"Den" g de
—(A+(3+3/Rh)*Hl*E)/(Den*(5+5/Rh)*Hl”
1=—(A*H1“2+B*H1“.+C*H1ﬂ4+D*H1“5)
2=—(2*A*H1+3*B*H1“2+4tC*H1“3+5*D*H1“4)
ks —le(A+3*E*H1+(9—3/Rm)*C*H1*2+(15—5/Rm)lD*Hl“S)
—RmtB+(2*Rm—6)*C*H1+(5*Rm»15)*D*H1‘E
Rm!(C+5tD!Hl)

RmxD

=C*H1“2+5/3*D*H1“3

T=“¥C*Hl+5*D*H1“2

Aav1=0 THEN 1100

ni=0 THEN.
T "LT2, 1"

*roeeASLLA42 IN THE STREAM FUNCTI0NS

~Q¥XEstrabxHz)

5tra+E5trb*H2“2*Phi“2+E5traka2*Phi)

fined line 1760

2

!Commands pPlot with dashed line.(for initial pProfile)
i

T "LT" "Commands plot with solid line

IF

(for deformed profile)

840
half p
850
Bb6G
tom (I
870
880
820
7XIni
P00
10
{20

243

Y L Svm=" nleots riaght hand
Q 1 STEF .1 'Sym is input as O or -1.,Svm=0
= T . i as
FD?iTesé$m=—l plots full svmmetric profile _
5 ym f BHou=1) or s}
FOR MinoxRoK TO 10%R2 STEF R2/10 'This draws the top (1 3
FOR M1=10XRZ2¥Sym IRR2
f Bou=0) boundary of laver 1
R THDXYLI 2VIXTL THRT LN
Uimt (2o TI+GIDEY L T4) X1~ (2¥CHY 145 2
s Y1 2+4XCXY13+5
Ul=C((2XAXY 1 +3kEX

- A R SRR SUSRIE & ¢ 31
BXY13+CXY1-~4+DXY1~5) + (ZXCXY1-2+5KD¥Y1~T) ¥ X1
Vi=(-(AXY1~2+ 3 o
vl orRay ¥ B tH2Z is taken to egual 10 USERS UNITS so tha
Y= (10XRh+V1X%1() ou 'HZ2

USERS UNITS; the velocities are mu ltiplied bv a 10-units time periode
S H

P30
240
50
60
P70

in la
80 !
F0
1000
1010
7%Ini
1020
1030
1040
1050
1060
1070
1480
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190¢
1200
1210
26%xY2"
1220
am2-9%
1230
1240
ity is
1250
1260
1270
1280
1290
marker
1300
1310
1320
26kY2™
1330
2~2-5%
1340
1350
1360
1370
1380
1390
1400
accor
1410
1420
1430

FRINT "PA",X,",",¥,":PD:SF1s"
NEXT M1 .
FRINT "FUz" . -
iti ; i vertical mark
v STEF .2 !'This draws the initiallv strilq:ﬁ%t e ally be
PoR Mizo 10 10 f the.small Rh value the vert]callscarel 45 3
i =]
e élge;?:Z:e:ated when plotting structures in lav
greatly ¢
X1=R1%H1%M » e e
§ 2 SED¥YL Y eX1 T 3. ()
N ) kY 1T +SKDAY174) KX 1 - (2HCRY 145
2 3 1244 XCkY173+5
Ul=({2¥AXY1+3xEXY

s CIVIXLT2IRTLA¥10 TN ING
g Y15 (ZACXY 1 "24+5kDXY1 "
2 17F+HCAY 1 4+DRY15) + (3
Vi=(-(AXY1"2+BxY
X=10XRAM+Ul %10
Y=N1¥Rh+V1ix10 !See 920 )
PRINT "PA" X,",",Y,":FD;SP1;
NEXT N1
FRINT "PU3"
NEXT M
FRINT "PuUz”
IF Lay2=0 THEN 1420
IF Ini=0 THEN )
FRINT "SF1:LT2,1"'See 800
ELSE ]
PRINT "SP2;LT"'See 820 o
- i lotting o ave 2
FOR Mo ts preparation for p Q
EF .1 !Here star
FOR M=Sym TO 1 ST
= THEN -
;ERMNEZ?O*R?*Sym TO 10XRZ STEF R2/10
2= 2
X2=M2XH2XRZ/ (10%R2) e
REXY2T X+ (—AQ2+2¥ADT =
Lo tan 2AAZTHRY2+TRA24XY 2 2+LXAZSXY 2 T+EXALLRYD4) ¥
U= (- {AZ2+2XA2TXY2 kA2 ’ ) o
; PR A CIHAZDKY 2 AHADLAYD T SH(SYAA I+ IHALDN Y DT ]
‘)*xg”I+A““*Y”+A“* Y2 2+A24XY2 " THARSRY D
VZ2=(A2 22%Y2 anz *
=3 2z 1%1077%1Ini
A26XY2"F) XX22) . _
- 8 5 UNITS and the
Y tiosiowe XBou+1OXRh ! H2 is taken to equal 10 USERS Ui
=11Q0+10%V2) XFou+10 !

meltiplied by a periode of 10 time units
FRINT “PA",X,",".Y,":FD;
NEXT M2
FRINT “FU;"
END IF

i initi © straight vertical
10 STEF .S !Now follow plotting of initiallv s g
FOR N2=C TO . !
s in layer 2
X2=R2XHZ*M
2=NZXHZ2/10 o e
5:—(—(A22+2*A23*Y2+3*A24*Y; 2+4RAZ2SXY
- -
BRIR 7% Enid
2) XX2™F)X3F.1¥1077 i . R
V“=(g21+A22!Y2+A”7 Y;'%+A24¥Y-
n;b*YE*E)*XZ*Z)*E.1*10“7*In1
X=10XR2KM+10%xU2 ]
Y=10iR;+N2+10*V2 ! SEE 12?0
FRINT "PA" . X,",."“,Y,";FD;
NEXT N2
FRINT "PU;" | .
i i ‘elocities eta
PRINT i ds and printing of ve
H lottina en
FRINT "FU3SFO;" 'Here p

ding to the commands below
()

+EXATEAYZE) KX+ (~ALD+TRATSI YIS XA

»*

HIHALTHY T -TRADSYY
IHAZSKYRTA+AZLIVY IS+ (THAA U+ IFALTIY D -TRADS

IF Frint=0 THEN 1710
Epsi=Rao2%Gr*H2/ (8%Mu2)



1440 Ufree=Epsi ¥HZKRZKI. 1K10>7
1450  Vfree=—Epsi kHZX3. 1k10~7
1460 IF Velfro=1 THEN 1490
1470 FOR Mi=1 TO O STEF -.1
1480 IF Veltop=1 THEN 151G
1490 FOR Ni=1 TQ O STEF -.1
1500 IF Velfro=1 THEN Mi=1
1510 Xi=MixR1%H1

1520  X2=Mi XR2KHT

1330 IF Veltop=! THEN Ni=t

1540  Y1=NixH1

1550  Y2=Ni kH2

1540 =¢(2 I -

! UL= ¢ (ZXAKY 1+TREKY 1 2+4KCAY 1 T+SKDAY 17 4) KX 1~ (2KCKY 1 +SADKY
1570 e o o

1570 zé=§_:2:11u;;giv1gatcxvlﬂ4+nxv1“5>+<3:cxv1h2+5tnxvr
1580 Ua= ‘;;Khl*;?1Y¢+J*A24*Y2“2+4*A25*Y2 z

1590 va=( +A5§*Yﬂznz e
202-SEKAZLRYZT) KX D
1600 FRINTER IS 1
1610 IF Mi=Ni THEN FRINT "COMES&NAFW: :HZ
!$Sé& R02=";R02;"Ufree=“;UfrEE,
1630 IF Ni=1 THEN FRINT USING
MME T, NG

1640 END IF

2 AXL1TE) XTI 1 K107

¥Vl X172 XZ. 1¥107
JHIAAZEAY 2 G) KX 2+ (—AF2+2 XA

IAY2U2HARER( D THARS KY 2 - e
1%107 SHALSAVITAHAZEAY RIS+ (THAS1+TAALZKY2-TKARSKY

H23; "H1=";H1; "R2=";R2
i b =i R25 " Mu2="y Qe
"Vfree=";Vfree 2 u sMUuZ; "Mul

"5X,12A,14A,14A,BA.2A,XX,2A”:"U1" tLRM YL, e

3+1/5*Ca+1/6*Da)*Rl+(1/ﬁ*Ca+5/12*Da)lRl
5*Cb+1/6*0b)*Rl+(1/¢*Cb+5/12*Db)*Rl

2090 Epotal=(-(1/
NS OF THE COEFFICIENTS IN THE ENERGY EXPI

2100 Epotbl=(-(1/4+1/
2110 ‘'HERE FOLLOW CALCULATIO
FOR LAYER 2

2120 G1=1&6/3%R+4/3¥R73
2130 &/ SIRR+AXRT S
2140 4/7 ¥R+44/SKR™ +24/5%R-S5+4/7XR"T7
2150 I+ 12ARCSHLOO/ D1EXRTT
21460
2170
2180
2190 R8=12%R+4XxK
2200 09=64/5¥R-8/3%
2210 010=40/3XR-10%R
2220 011=16¥R+5%R
2230 D12=120/7%K-BXR™5

2240 Q13=ZO*(R+R”3+3/5*Rﬁ5+1/7*R’7)
2250 214=-10%R 12%R"S

2260 R15=-24%R-

2270
2280 R 12%R™5
2290 ‘EstraZ,Estrb2= AND EstrahZ? ARE FACTORS TO MULTIPLY WITH A“2kH2"4,

AND AXEXHZ2™S IN THE STRAIN EMERGY EXFRESSION FOR LAYER 2

2300 !
2710 EStralE=4#R*AE"a“2+Q1*923a”2+02*A24a“2+93*925aﬁ2+94*A?baﬁ2+lZ*R
*B*(AEEE#R+A24E*R+Qb/8*925a+07/8*926R+A4Za*R

SXA42a2+A2

X (DBXAZ4a+09%AZSa+01

OXAZ6a-BXR XA41a+4XR-IHAA2Za) +AZE

2320 Estra A
Sa+Q12XAR6R-12XR ’iA4la)+A25ax(Q13*A2&a+914*A42a+@15*A41a)+12*R“3*A41a*
2330 EstraZ=Estra12+E5tra22+ﬁ26a*(016*A423+917*A41a)

23R40

(RN

::zu FRINT TAR(S4) ;M1 :Ni

O PRINT USING "DD.10D";

1ert  mewy oS 10D 301, 02,V1,V2
1680 NEXT Mi

1690 PRINT “ "

1700 PRINT " "

1710  END

1720 E R L T SR U U

1;30 SUE Erergyfactaors
1740 ‘Den IS TERM
29 IN FOLLO ] !
1750 COM REAL H1,H2?,R.R2 R - Aoy Lons
Estrb,Estrab . -,
1760  Den=&/Rh~9-9 /Fn-

-9/Fh"2-24/ (R X J+3/Rh
1770 Comgoaan (RhXRm) + (3+3/Rh 3
1780 Cb=(3+3/Rh) /Den
17?? Da=-Ca/ (SX(1+1/Rh))
180? Db=-Cb/ (Sx¢i+1/Rh))
1819 A21a=~Rh"2% (1+Ca+Da)
1820 A21b=—Rh"3% (1+Cb+Db)

+SEE ALS0 C AND D,LINES &80, 690

sR1,Rh, Z.K
- «Rh Gr,Ral,RDL,hro.ﬂul,NuE,Rm,Den,Etha.Epofb Estra

S/RBHF/RNCZH12/ (RhXKmY ) / (1+1 /Rh)

1839 =-RhX (2+4%xCa+5%xDa)
ig:g =—RE"2X (3+4XCb+S%Db)
5 = = 3 -
oo Rm+ (Z-9%Rm) XCa+ (S-15%Rm) ¥Da

1870 A24an (oARa-G) $0n, mmn (St 1o A mara ) FDEARR
C & +(5 =15

LSB? AZ4D=—Rm+(2*Rm—6)*Cb+(5*gmi;;rsg/Rh

1890  A2Sa=~RmX (Ca+5xDa) /Rh™2 - °

1900 25b=-Rm% (Cb+S%Db) /Rh

1910 A26a=—-RmkDa/Rhb

1920 A26b=~Rm¥Db/RH

1930 Ad41a=Ca+5/T%Da

1940 A41b=(Cb+5/3xDb) xRh

1950 A42a=(2%Ca+S5*Da) /Rh

1960 A42L=2¥Cb+5%Db

-iz;g g:=f4/7lR1+132/15*R1“
C =100/PXR1+100/7% 2%R175 0 "

l??? Ac=(64/5'ﬁl—24/9¥ﬁ?i —;}EIE;“ETIUU/211R1“7

:UU? Ad=(40/3XR1-10XR1"3-4%kR1"S)

:?l? Bc=(16¥R1+6XR1 —-12/5%R1"S)

:9:9 Bd=(120/7%R1-8xR1"5)

:323 ?g=fo*?1+20*ﬁlﬂ3+12*R1*5+2@*R1“7

2040  lEstra sEstrbl AND Estrabi ERELG A 3 N

o tro W ARE FACTORS T K -

i !Esgtzt?ég;tgllzﬁgTﬁgéN ENERBY EXFRESSION FDRDL:$E;ITLY WETH Anzes

ﬁENERGY ENFrESS O Bom LAYEéT?RS TO MULTIFLY WITH AXHZ"4 AND BXH2"5 IN FOTENTIA

:96? Estral=(16/3*R1+4/3#R1“3+C1*Ca” '

2070 Estrbl=(36/SkR1+4XR1

2080 Estrabl=(12XR1+4%R1

Db+Cd¥ChxDa) ¥Rh™S

D+72/1SXR1“S+4/TRRL 7

-4, B

2+D1%Da"2+AcKkCa+AdxD

L Da~2 a+CdxCaxDa) xRh™

f:é:fg 2+D1:Db“£+Hc*Cb+Bd*Db+Cd!Cb*Db)*Rhﬁz !

2 a*Cb+¢*D1*Da*Db+Ac*Cb+Ad#Db+Ec¥Ca+Bd*Da+Cd*C\*

2350 Estrbl2=4XR¥AL b“2+91*A“Eb“2+02*AE4b“2+93*A25b*2+G4*Abe”2+121R*3
S¥A42bL2+AZ2DXBX (A *R+A24b*R+06/8l925b+a7/B*ﬁ26b+ﬁ42b*R“
2360 Estrb22=ﬂ23b¥(QSXA?4D+Q9*A25D+G10*A26b—8*R“3*A41D+4*
5D+Q12*A26b—12*ﬂ“3¥ﬁ41b)+925b*(013*A26b+014*A42D+Q15*&41b)+
2370 Estr 2=E5trb12+E5trb22+A26b*(016*A42b+017*941b)

A4ZD) +A24
R TRAALDX

[RE

2390 Estrab12=8*R*A22a*922b+2*@1*AESa*AESD42*QZ*A“4axﬁ24b+2tﬂ3#9255192
26a*A26b+24*R‘Q*A41a*A41b+2*QS*A4Qa*A42b+AEQaX(B*A bAR+OXAZ AL XR+Q6XA2T
2400 Estrab22=AEEa*(D7*A26D+B*RA3*A42b)+A22blB*(A23alR+A24a*R+06/8*AZS
ba+RA3*A42a)+A233*(QB*A24h+Q9*A25b+QlO!Abe—BkR“3*A4lb+4¥R“3¥A42b)

2410 Sb*(QB*A24a+09*A25a+QlO#AE&a—B*R”Z*AQla+4*R'\#A4Ea)+92
25b+ﬂ12!A26b—12¥R”3*A41D)+924bx(Ql1*A25a+912X9263—12*R“3¥A41a)

2420 Estrab42=92531(Q131926D+Q14*A42D+015*A41b)+A25b*(QlS*A26a+Dl4*A4I
a)+A26a*(lexﬁ42b+017th41h)+A26bx(9161A423+Q17*A41a)+121R“31A413*A42b
2430 Estrab2=E5trab12+Estrab22+Estrab32+Estrab42+12#R*3#A4lb*A4Ea
2440 vt

2450 Estra=MulXEstral+MuZXEstra2 .

2460 Estrb=nul!Estrb1+Nu2*Estrb2 Y

2470 Estrab=NullEstrabl+Mu2¥Estrab2 Wﬂ

2480 ! i3
2490 !'BELOW FOLLOW CALCULATION OF THE FACTqRS TO MULTIPLY WITH A¥H274

5 [N THE EXPRESSION FOR POTENTIAL ENERGY INJLAYER 2
2500 EpotaZ= A213+.5&A22a+1/3!A23a+1/41A24§f1/5*A25a+1/éxA26a)#R+(A4L
—1/F%A25a-5/12KA262) XR"3
2510 Epotb2=(A21b+.5¥A2
—1/3XA25b-5/12XA26b) ¥R"3

2520 v !
2530 Epata=R02!Grl(Epotal*RrD+Epota2) i
2540 Epntb=R02*Grl(Epotblero+Ethb2)

2550 SUBEND
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END IF
FRINT TaAm(
*RINT USING
MNEXT Ni
NEXT Mi
PRINT » " l
FRINT = " i
END ‘ t
' it L A R N |
b
?gﬂ Energyfactors T
-Pen IS TErRM 1IN FG
o e R R&Lg?ING EXFRESSI1ONS »SEE ALSO ¢
Istrab ? +HNaR2, ,Rh.GF,RDl,RDE,RFD,Nul Hu“ RAND o s g
)en=6/Rh_9—9/Phh2_24/ o . 2. m,Den,EpmtanEpotb,EEtra.
la=1/Den |
2b=(3+3/Rh)/Den
)a=—Ca/(5*(1+l/Rh))
'b=—Cb/(5*(1+1/Rh))
w31a=—Rh“2*(1+Ca+Da)
:i —Rh“3*(l+Cb+Db)
:4a=—Rh*(2+4*Ca+5*Da)
‘2b=—Rh”2*(3+4*Cb+5*Db)
Rr;(E—?tRm)*Ca+(5—15*Rm)*Da
o m*Rh+(3—9*Rm)*Cblﬁh+(5—15
>4b—_¢ Rm—é)*Ca/Rh+(5*Rm—15)*Da/Rh
4 : 3m+(2*Rm—6)*Cb+(5*Rm—15)XDb
::a——Rm*(Ca+5*Da)/Rhﬁ2
;ub=~Rm*(Cb+SlDb)/Rh
'‘6a=~RmXDa/Rh-
6b=—Rm*Db/Rh“2
la=Ca+5/3xpa
!b=(Cb+5/3*Db)*Rh
2a=(2tCa+5*Da)/Rh
Eb=2*Cb+5*Db
=64/7#R1+1?2/15* g1
: / X Rl“\+7°/1=*RI“= 1
-:OQ/ZXR1+IOO/7*R1' 1;*R7“3+1;§4:7*R1?7
: 6?/:*R1—24/9*R1' B/S*Rl“;) R
-(4U/J1R1—IO*R1“_—4*H1“3) h
(16¥R1+6*R1”¢ JZ/S*RI”;)
(¥20/7*R1—E*R1“5) N
iulﬁl+20*R1*3+12*R1“5+20*R1“7
ral,Estrbi AND
D Axixrig 1 STsstrabl BELOW akRE FACTORS 10 MULTIFLY WITH
atal,Epotbi ARE F e | L
! N e LAYEFR 1 t
(FRESSION FOR LAYER ?Rg ™ ML TIRLY Ha
-si;:iz:i:ﬁl+4/3*ﬁl“3+C1*Ca“2+DltDa
labl:;ln;ﬁﬁizzlﬁl’ C1*Cb*2+D1*Dh“2
2
') KRS R1 2*C1*Ca*Cb+2*Dl*

FIAXL D) KF, 1y g
ZSXDxY Foivtony
26KV A EX2+ (-ALZHZRAZS RV 2SR

1¥Y2“3+A25*V2W4+A26*Y2”5+(

. 3*A41+3*A42*Y2-3*A25*Y

NAPw::H?~";H£E

EN 7 BT

THI: "Resv e g, o —n
;v{}ee fR2; "Mu2= sMu2; My

3
x,12A,14A,14A§BA.2A.xx.2A"-"u1" "upn
]‘ » H 1 T

b
‘
v

uVIH.”VEH'

S4) M3 HIH
"DD. 100" ;U1 ,uz |l L ya !

2 !

i
!

(Rh*Rm)+(3+3/Rh“7

o/Rh+9/Rh“2+12/(Rh*Rm))/(1+1/Rh)

¥Rm) kDb *Rh

25 IN FOTENTIAL
“2+AC¥Ca+AdXD
+ECXCh+Bd¥Dh +
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Cd*Cb*Db)*Rh“é
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2090 Epotal=(-(1/3+1/5%Ca+1/6%Da) ¥R1+(1/3k%Ca+S/12%Da) ¥Rt "Z)¥Rh"4

2100 Epotbl=(-(1/4+1/5%Cb+1/6%Db) kR1+{(1/3Z¥Ch+5/12%Db) ¥R1 X)) *Rh"S

2110 'HERE FOLLOW CALCULATIONS OF THE COEFFICIENTS IN THE ENERGY EXFRESSION
FOR LAYER 2

2120 Q1=16/3%R+4/3
2130 R2=346/5XR+4XRT3

2140 S+4/T7IRT
2150 TS+H100/21XRT
2160

217C¢ Q&=8% (R-R

2180 @7=8%(R-5

2170 OF=12%R+4%XR

2200 09=64/5xR-8/3%R

2210 @10=40/3%kR-10xR

2220 Q11=16¥R+6XR"3-12/5%R"5

2230 R12=120/7%¥R-8XR"5

2240 1Z3=20% (R+R"I+3/GAR™G+1/7XR"T) .

2250 214=-10%kR*3-12XR™5

2260 15=-28%XRT34+24/5¥R™G

2270

2280 TOXRTI+H12XRTS

2290 tEstraZ,.Estrb2= AND Estrab2 ARE FACTORS TO MULTIFLY WITH A-2¥HT"4_ B T2¥H2"&
AND AXEXHZS IN THE STRAIMN EMERGY EXFRESSION FOR LAYER 2

2300 I

2710 EstralZ=4rR¥AZZa"2+01XA23a " 2+02KAZ3a 2+0IXAZSa " 2+04¥AT6a 2+ 12¥R “3¥A4 12 "240
SEXAL2AT2+ATLAXBX (AZTaXR+AZ4aXR+D6/B8XARSa+07 /BXAZ6A+A42aXE
2320 Estrall=A23aX (08XAZ4a+0P¥AZSTa+010KAZLa-BIR"IXALGl a+A¥R"TIA
Ta+12XAZ6Ra-12KRTINA412) +AZSaX (D1TXAZ6A+014XA42a+015XA4 1) + 1 2¥R
2370 Estral=sEstrall+Estral+A26a% (R146%A42a+017%A41a)

. Vi

=23 Estrbl2=4XRXAZ2ZL"2+Q1 ¥ARIb"2+D2XAZAL " 2+03XAZSb " 2+Q4%XA26b2+12¥R "T1Ad1b “2+40

SHAAZHZ+AZZDABX (AZTDAR+AZALKR+DE/OXAZSH+D7 /8XAZ6b+NA4ATh ¥F

2360 EstrbII=A27bX¥ (A8XAZ4H+QFXAZSh+Q10XA26b-8¥R-IXA4Ib+A¥R

Sh+R12¥AZLb-12XR"3XA41D) +A2SHX (D1ZKARLE+C14XAAZLH+RISXA4 1) +1 2XK

2370 Estrb2=Estrbl=+Estrbl2+AZ46b¥ (R16¥A4ZD+Q17¥A41b)

2380 1!

2390 Estrabl2=8XRXAZZaXAZZb+2XO1XAZTa¥ARIb+2¥02%AR4a¥AZ4b+ 2 XOTKARSAFAZSH+2¥ 04 %A
26aXAZ6H+ZAXREIXAA1AaXA41b+2XASKAAZaXAATH+AZZ X (BXAZIEAR+SXATAbXR+06¥A2SH)

2400 Estrab22=A22aX(R7XA26b+8XR"IKA4ZD) +AZ22bXBX (AZTakR+AZ4axR+06/8XAZS5a+D7/8XA2

La+RT3KAAZ2) +A2TaX (ABXAZAD+OZXARSh+O 1 OXA26b-BXR"3XA41b+4XF "ZXA42h)

2410 EstrabI3Z=RA23b¥ (I8*AZ4a+QPXANSa+010KkA26a-BXR"3IXA41a+4XF"3XAA2a) +AZ4aX (D1 1¥A

25b+012XA26b—12% 3KA41b) +A24bX (1 1 XAZSa+012XA26a—12XR"3XA41a)

242¢ Estrabd4Z=AZSaXx (B13XAZ6b+A14XA42D+Q15XA41b) +AZShX (A1 TXA26a+R14%A42a+015KAG L
a)+A246aXx (214XA4Z2b+017%XA41b) +A26bX (B 6XA42a+Q17XA41 ) +12XR"3¥A41aXA42h

Z430 EstrabZ=EstrabiZ+Estrab22+Estrabl32+Estrabd4l+123R"3XA41bXASZR

2440 '

2450 Estra=Mul¥Estral+MuZXEstra

2460 Estrb=MuilXEstrbl+Mu*Estrb2

2470 Estrab=MulXEstrabl+MuZxEstrabl

2480 '

2430 'BELOW FOLLOW CALCULATION OF THE FACTORS TO MULTIFLY WITH AXH2 "4 AND BRXH2Z™
5 IN THE EXPRESSION FOR POTENTIAL ENERGY IN LAYER 2

2500 EpotaZ=(AZ1a+.5KXAZZa+1/3XA23a+1/4%A24a+1/SkA25a+1/6XA26a) XR+ (Adla+1/2%A43a
—1/3%A25a-5/12%XA246a) XxR"3

2510 Epotb2=(A21b+,5XA22b+1/3%XA23b+1/4%XA24b+1/SKAZSH+1/6XAZ6b) ¥R+ (A41b+1/2XA42b
—1/3%A25b-5/12%A246b) XR"3

2520 e

2530 Epota=RoZXGr X (EpotalXxRro+EpotaZ)

2540 Epotb=RoZX¥GrX (Epotbl1XRro+Epotbl)

2550 SUBEND
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ABSTRACT

Gaviglio, P., 1986. Crack-seal mechanism in a limestone: a factor of deformation in strike-slig

Tectonophysics, 131: 247-255.

nism may play a major part in the deformation process in a sl

A repeated crack-seal mecha ina

This paper develops a microscopic approach to the association of s:hefar ;:lzlx-:ses ;:ds e
between two en échelon faults. The simultaneous development of these fractures y

rn.
pan';:'he: structure, discovered in a Cretaceous limestone of the Arc b-a uches du Rione.
located between two left-stepping sinistral strike-slip [aults. T.hc horizontal dl‘sp acenrudn dos
a few centimeters: therefore the structure may be representauv.e of the earl.y stage o . ¢ !
a brittle shear zone. Each strain increment includes both shearing and tensile fracturing.

sin (Bouches du Rhone, !

conditions of friction seem to be prevailing.

::

I.‘

INTRODUCTION

i

scales (Tchalenko, 1970; '
ce of tension cracks is func
h, 1975), as well as throug
d Ambraseys, 1970; Rayn
, 1983).

wrocess of natural rock def

Faults are discontinuous fractures at all leng]
al., 1976; Segall and Pollard, 1980). The exist
to the early stages of fault development (Be i
deformation of the shear zone (Tchalenko &
Delair, 1978; Segall and Pollard, 1980; Gamo

-seal mechanism is a significant : .
(R:r};:a;faf;SZj: a tension crack forms underf ccurflulalior} of elasu.c str:
ated with fluid pressure and is filled by ¢ stallized minerals thljoug
transfer; repetition of cracking and sealing forms compound vemlsl z
fibrous crystals and, possibly, inclusion bandg para.llel to the rock wall. ;
increments form according to various processgs of flbr‘e grow.th (Cox and !
1983). Most of the described tension veinsi"d‘isplaymg ev1c?ence of this
incremental strain seem to have resulted from simple shortening and stret

'
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