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ABSTRACT: Sediments are delivered to basins or

rises by a number of discrete processes or sets of

processes working from several sources including terrigenous, biogenous, and hydrogenous which
may deliver sediments continuously or discontinuously. The processes can be grouped in terms of

the zone from which they move sediments direct]

shore systems, shelf systems, canyon systems,

y to the deposition site. These include river and
slope systems, and the Processes operating in the

overlying water column. River and Canyon-centered processes work from point sources; shore, shelf
and slope-centered processes deliver from linear sources; and the water mass-centered processes operate
from area sources. These are the primary determinants of the patterns of sediments deposited from

these sets.

Of these sets of processes and their resulting products, the river-shore System and the canyon
system are easily the best known. A new surge of interest has begun for the slope_ system, but
the water mass process system and the resulting hemipelagic and pelagic sediments and sedimentary

" rockshave been only narrowly studied although they produce the most complete records of environmental
(climatic) changes and provide the best correlation data.
Another area of research yet to be broadly developed lies in the study of interactions between

INTRODUCTION
Boundary Conditions

Anatomy is the study of a body to ascertain
s component parts, their structures, rela-
tonships, and functions. This can be con-
sirued in several ways geologically, but I
propose to use a sedimentological analogy
uking a sedimentary prism as the “body.””
I'will also discuss closed basin deposition

' specifically although I recognize that large

(dimensions of 10’s or 100’s of km) sedimen-
lary lenses can form without a closed depres-
tion catchment area. The continental rises
e good examples. I use the closed basin
& my model because I am most familiar
vith that form and because it is the form
‘ommonly studied for economic purposes.
Iwill use examples from the contemporary

"  %can and specifically from the California

Continental Borderland (Fig. 1) again be-

~ ause of my own experience. I will generally

% discussing ‘‘deep” water sedimentary
‘\
Received September 25, 1978.

processes and products and to me this means
water depths typical of continental margins
and ranging from 100 m to 5000 m.

I must also define what scale I am using
in a stratigraphic sense. The contemporary
recognition of major lithosequences (Sloss,
1963) controlled by world-scale crustal mo-
tions (e.g., Vail, Mitchum, and Thompson,
1977a) which in turn can be subdivided into
progressively smaller orders of sedimentary
sequences has revolutionized our thinking
about earth history and the major processes
producing large sedimentary deposits. An-
other exciting area of research based on
materials from world-wide piston coring pro-
grams and from the Deep Sea Drilling Pro-
gramis the detailed analysis of world climatic
changes which has now been extended back
to Cretaceous time (Savin, Douglas, and
Stehli, 1975). It seems to me that these two
major stratigraphic advances provide a world
framework into which smaller pieces of rock
record can be fitted to provide large scale
interbasin correlations.

My own work has been with the small
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Fic. 1—The California- Continental Borderland
showing the outlines of the major basins. Upwelling
is centered in the area south of the Northern Channel
Islands and extends south to 33° N Latitude.

regional parts of the whole. For example,
the history of the borderland evolution prob-
ably is no more than a very few millions
of years in length and would be one of the
smaller cycles as defined by Vail, Mitchum,
and Thompson (1977b). Initiation of the Bor-
derland began in late Miocene time (Doyle
and Gorsline, 1977) and since that time tec-
tonism, probably in pulses, has continued
to alter the accumulating deposits. This can
be minimized as a factor by looking at small
units of the depositional record of essentially
conformable nature. In most of the basins
this conformable unit (see Fig. 2) has been
defined by seismic data and estimates made
of its age, which appears to be latest Pliocene
and Pleistocene (Junger and Wagner, 1977).
This unit is actually composed of many
smaller cycles of the order of a few tens
of thousands of years and which represent
the deposits laid down during single sealevel
cycles. Each of these is sufficiently short
so that tectonism has little effect on the shape
of the depression receiving the sediments
although tectonic activity continues to be a
majorinfluence in some sedimentary process-
es at all times as in the example of mass
~movements initiated by earthquake shocks
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on a given slope (Ewing and Heezen, 1959.
Haner and Gorsline, 1978). In a sense these'

small units are models of the world-wig, i
sedimentary sequences whose scales gre 1
hundreds of millions of years just as the
borderland basins are models of the congj.
tions occurring in large oceanic basins. Thyg

my work has in great part been model studjeg -
of the latest cycle of accumulation (aboy *
30,000 years) within small margin basins, - ;
The limits of resolution of given samplj
methods are also important boundary cop.
siderations. W. R. Normark (1978) hgy
emphasized that what we see in maripe
continuous seismic profiles and piston coreg
may be highly biased as compared to the
level of observation possible in a good syr.
face outcrop. Similar caution has been giveqg
by the new seismic stratigraphers (Sheriff,
1977). This limitation causes much of the
difficulty in meshing stratigraphic studieg
with studies of the contemporary ocean.
Different goals require different levels of -3
resolution. On a world level, major cycles
and relation of major sedimentary belts to
crustal tectonic history can be examined with
broad brush methods. Conversely, the defi-
nition of geologically important variationsin
climatic factors may require resolution al- #
most at the annual level to be of value to 7%
specialists interested in modelling long term 3§
climatic changes. Perhaps because of my
grounding in oceanography, my interests lean 3
towards the fine comb rather than the coarse %
one; both are necessary elements in our §
ultimate understanding of earth processes. 3
Many marine geologists (e.g., Emery and §
Uchupi, 1975; Rona, 1973; Gorsline and
Prensky, 1975) have also been impressed
the strong influence of sea level changes
a control on the delivery of sediments 10
basins or rises. Perhaps a better view of thi§:
is to speak of changes in shelf width. A{
high sea level, shelf width is maximum and
acts either as a storage area for sedimenth
or influences coastal processes that tri
material in estuaries, coastal barriers,
inner shelf shoals (e.g., Emery, 1967; Swi
1974; Allen et al., 1977). This control |
operated to some degree during sea le¥
cycles of all time scales. k.
I believe with most sedimentologists th®
the two primary controls of sedimentalio® .
are tectonic and climatic. All other factoff:

Fia. 2—Sketches of seismic p
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and Q is Quaternary. There is sor
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Fic. 2—Sketches of seismic profiles taken from Junger and Wagner, 1977, which illustrate the dimensions
and thicknesses of the latest conformable sequence of basin filling in Santa Monica Basin. Tp is latest Pliocene
and Q is Quaternary. There is some question about these extrapolated ages and the entire conformable sequence
may be Pleistocene.

Supply = (S)X(Ar)

where § is the mean sedimentation rate and
Ar is the receiving area. Thus, if due to
overtopping of a sill, receiving area doubles
but supply remains constant, the mean rate
must decrease by half. Therefore, variation
in sedimentation rates with time in a single
core is not unambiguous evidence for change
in regional supply and does not require a
climate change.

derive from these as they work on the crustal
material of the Earth. In the cycles which
I have studied, the time scale reduces effects
of tectonism and emphasizes climatic effects,
as the dominant primary control. I doubt that
I need detail the influence of these factors
as they control weathering processes, sedi-
ment delivery, relief, base level, and so forth.

Measurement of sedimentation rates is a
very useful tool in deciphering variation in
sediment supply. In the simplest case, as
sediment supply changes, sedimentation
rates in the system respond directly. We
sometimes forget that the presumption un-
derlying this is that the receiving area for
sediments remains constant. This is probably
true in closed basins but is not true for basins
filled to sill depth or for the slope-rise-abyssal
plain system where the great size of the
receiving region gives the effect of an infi-
nitely large basin into which the sediment
prism constantly expands with time. The
general relation is as follows:

Modelling Sedimentary Deposits

Several years ago in an earlier SEPM
Presidential Address, Sloss (1962) defined a
model for quantitatively describing the shape
(P) of sedimentary deposits:

P =f(Q,R,D)

In this general equation, Q represents the
quantity and composition of the materials
introduced, R is the rate of subsidence
(uplift), and D is the dispersal rate of material
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through the system. Sloss then briefly de-
scribed a few examples of the manipulation
of the model illustrating that transgressive-
regressive sequences can be produced by
mechanisms other than the traditional sea
level change.

This view of the development of sedimen-
tary bodies impressed me and has been one
of my guides to thoughts about the evolution
of marine basin deposits. A later article by
Allen (1964) expanded upon Sloss’s examples
and examined more complex synergistic in-
teractions in the equation.

In discussion of the modes of filling marine
basins I will use some very general terms
to describe particular types of sediment
input. Table 1 is a simple classification of
marine sediment contributions which is based
on the continuity of supply. The rain of
pelagic and hemipelagic materials is essen-
tially continuous although most commonly
at varying rates; a turbidity current or a
massive slide are examples of discrete geo-
logical discontinuous contributions that
occur at widely varying intervals of time
(Gorsline and Emery, 1959). I recognize that
these two groups are much simplified but
the concept is useful for general discussion.

Neocatastrophism

In recent years, a majority of marine
geologists and sedimentologists have come
to recognize the importance of the rare major
event. Such events include the flood of the
century, the rare train of long waves at sea,
the major earthquake of a century. This
neocatastrophism (on a human time scale)
is actually geologically common and repre-
sents in many systems the moment during

TaBLE |.—Marine Sediment Contribution

A. Continuous
Terrigenous
nepheloid
wind borne
traction
Biogenous
pelagic
benthic
B. Discontinuous
Mass Movement
slide
slump
high concentration flows
Turbidity Currents

which large movement of material occurs r

separated by periods of relative quiet or
equilibrium (Booth and Gorsline, 1973). In
southern California, the major floods tend
to come at decade or generation intervals
(e.g., 1914, 1938, 1969) and in a few days
deliver loads of sediment to the coast that
exceed the cumulative delivery during all of
the intervening years. These markedly dis-
turb the equilibrium of the local shelves and
produce much increased deposition rates in
the associated basin deposits (see Drake,
Kolpack, and Fischer, 1973). Several years
may be required to return the system to
equilibrium.

CALIFORNIA CONTINENTAL BORDERLAND
Form and Origin

The continental margin off southern Cali-
fornia and northern Baja California presents
a different aspect as compared to the tradi-
tional picture of margins as (1) simple terraces
forming the periphery of the craton and
descending to abyssal plains that flank typical
passive margins, or (2) into trench axial floors
in tectonically active margins. The border-
land form is typified by strike slip or shear
margins of which southern California and
northern Baja California are excellent exam-
ples (Junger, 1976; Crouch, 1978).

" In the borderland province, roughly 1000
km long and up to 200 km wide, approxr
mately 20 basins are arranged in three irregw
lar rows to form a checkerboard pattern (Fig.
1) oriented northwest-southeast (Shepard and
Emery, 1941; Moore, 1969; Doyle and Gors
line, 1977). The basins range in axial length
from 50 to nearly 200 km and in width from
20 km to 100 km. All but one (San Dieg
Trough) are closed depressions and have s
that range in depth from 200 m to over 2
m.
The borderland is unique in the presest
oceans because it provides a set of margi®
basins arranged at increasing distances frod
the sources of sediments. This is true b
for terrigenous and pelagic supplies. )

Very much simplified, the borderland #
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of the borderland and shoal north and south
of the central depressed zone.

Although there is still much controversy
on the structural evolution of the borderland,
most workers agree that the general form
was initiated in Miocene time and the con-
temporary basins contain conformable, con-
tinuous, and relatively undisturbed deposits
that date probably from late Pliocene time
(note D. G. Moore’s pre- and post-orogenic
classification, 1969; Greene, 1975) and over-
lie increasingly deformed older late Tertiary
sediment prisms.

The local basement formed by highly de-
formed rocks includes sedimentary rocks of
Cretaceous age, volcanics of middle and late
Tertiary age and basement complexes of
Jurassic and Cretaceous age (Franciscan
facies and batholithic units respectively)
(Howell (ed), 1976). The contemporary sedi-
ments are derived from all of these lithologies
and mainly from reworking of the Tertiary
basin sediments that fill the inner basins such
as Los Angeles and Ventura Basins to above
sea level and also form the dissected flanking
formations of the coastal mountains.

Sediment Sources and Rates Over Late
Pleistocene Time

Borderland sediments are produced under

a semiarid climate from sparsely vegetated -

surfaces and are sandy. Runoff is strongly
seasonal and major floods of historic record
come at intervals of decades to generations
(e.g., 1862, 1883, 1905, 1914, 1938, 1969).
During these major floods more sediment
is delivered to the nearshore than in all of
the intervening time and the shelves are
abruptly overloaded beyond the available
wave and current capacity to disperse the
rapidly contributed load. These periodic geo-
logically instantaneous pulses (1969 runoff
delivered about 10° tons in 10 days of flow)
throw the nearshore transport and deposi-
tional systems out of equilibirum (see Booth
and Gorsline, 1973) and a period of a few
years is required to restore equilibrium
conditions (Drake, Kolpack, and Fischer,
1973). Scott and Williams (1978) have exam-
ined the erosion rates on land and their data
show that the erosion is also concentrated
during these exceptional events.

Work with sedimentary deposits laid down
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in the borderland over the last glacial cycle
(roughly the past 30,000 years) (Gorsline and
Prensky, 1975; Pao, 1977) shows that the
rate of terrigenous contribution can increase
as much as an order of magnitude during
the cold, low sea level glacial epochs (Figs.
3, 4). Lowered sea levels increase stream
gradient. Climates were probably wetter but
still strongly seasonal and so runoff increased
while the soil-holding factor of the vegetation
remained low. Pollen evidence (Johnson, in
press) suggests pine forest cover of coastal
California during glacial times but this ob-
viously did not inhibit delivery of large
quantities of sediment. It is also possible that
storm/flood frequency was higher. Nu-
merous valleys that are much larger than the
ephemeral streams that presently drain them
are typical of Baja California and piston core
data from the southern offshore basins are
evidence that these regions contributed much
more sediment than now at the times of
lowered sea level perhaps 18,000 to 20,000
years before present.

The Borderland is located on the east side
of an ocean basin in middle latitudes and
so upwelling is a major process. Figure 5
illustrates the changes in biogenic sedimenta-
tion rates that take place during a glacial
cycle. Just as terrigenous input markedly
increases, biogenous rates (Fig. 3) more than
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Fic. 3—Sedimentation rates of the various major
sediment contributions in an outer basin piston core
(Tanner Basin). The times of highest sedimentation rates
correspond to times of cold water conditions based on
foraminiferal data. Sedimentation rates are in amount
of dry sediment per unit area per unit time.
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Fi. 5-—Biogenic contribution during the current
warm water episode matches the area of present upwell-
ing. In late Pleistocene time (ca. 18,000 yrs B.P.) the
pattern shifted south, enlarged, and the rate markedly
increased.

double during the cold periods due to the n while traction processes n

increased rate of ocean and atmosphere cir.
culation at those times of strong thermal
contrast between equator and high latitudes,
Note that on a world scale, larger scale
oscillations of ocean temperature have oc.
curred over Tertiary time and are document-
ed by Deep Sea Drilling Program data (Savin
and Douglas, in press). With increased
planktonic productivity, the water chemistry
of the water column in areas of upwelling
alters and increased carbonate solution
occurs (Berger, 1970; 1974) and so the real
changes in bioproductivity in the upwelling
areas of the northern Borderland were prob-
ably larger than the roughly two-fold increase
seen in carbonate sedimentation rates in the
basin sediments during the cold water low
sea level cycles (Fig. 4).

Water Motion and Sediment Dispersal

Water circulation is the major factor in-
fluencing the disposition of suspended sedi-
ment and where it strongly affects the bottom
can also determine the patterns of traction
load distribution. Water motion in the Bor-
derland involves several scales of dimension
and rate. Surface layer circulation (upper-
most few hundreds of meters of the water
column) is driven by the major wind stress
circulation of the north Pacific and is domi
nated by the slow relatively shallow and
broad California Current, a typical eastern
boundary current. This is deflected by effects
of topography, winds, and Coriolis effect (se¢
Emery, 1960) to form a large gyral over the
northern Borderland centered on the areas
of large scale upwelling south of the norther
islands (Figs. 1, 5). The currents then swing
south past the northern Baja California coast:
and to the equatorial covergence. Suspended
fines are thus carried into the Borderland
from far distant sources (Fleischer, 1970).

Seasonally when the offshore atmospheri¢
pressure cells shift and weaken, the Califor
nia Current shifts seaward and a deeper flo¥
moves to the surface along the inner margl
forming the Davidson Current. Thus durin$
some parts of each year coastal turbid wates
will move north rather than south with th¢
major surface drift. Over shelves, gyr
form as boundary cells to the major currents
These may move suspended load to one basi

al to another.
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Deep circulation is controlled by the deeper
gaps in the Patton Escarpment and enters
the outer central Borderland and moves north
over progressively shallower sills. Basin
water below sill depth is uniform in density
(Emery, 1960) and so the succeeding northern
basins are filled by progressively shallower
levels of the entering deep water flow. This
flow at the present is from North Pacific
Intermediate Water with very low oxygen
content. Therefore, the basin floors are all
covered by waters with initially low oxygen
content which is further decreased, as the
deep waters move north, by oxygen demand
of the organic matter contributed from the
upwelling process. In Santa Monica and
Santa Barbara Basins (Fig. 1) the bottom
waters over the central basin floors are
anoxic and cannot support a benthic macro-
fauna. Therefore, reworking of primary sedi-
mentary structures is excluded, preserving
varve-like laminae in hemipelagic sediments
(Hulseman and Emery, 1961; Soutar and
Crill, 1977). During the cycles from warm
to cold climates and associated variation in
general oceanic circulation rates the position
of the oxygen deficient intermediate water
masses and the intensity of the minimum
varies. There are suggestions in the sedimen-
tary record of the central borderland basins
that the oxygen minimum increases in
thickness and that oxygen is further de-
creased during cold cycles although much
documentation is needed (Gorsline, 1977).
Geologically the importance lies in the pre-
servation of annual laminae which can yield
annual resolution of sediment contribution
which in turn is primarily related to annual
runoff (Soutar and Crill, 1977). Sill depth
controls the microfauna assemblages of each
basin regardless of maximum basin depth.

Tides influence the entire water body of
the borderland and where topographic con-
strictions are present, the currents may reach
velocities sufficient to scour the sills. Mea-
surements at depths of 1800 m in one such
constriction in the San Clemente Rift area
show strong tidal cycles with maximum cur-
rents of 25 to 30 cm/sec within 3 m of the
bottom (J. E. Warme, pers. comm.), which
are adequate to move sand. Profiling reveals
scour of the sills between Santa Monica and

San Pedro Basins which has since been
mantled by recent sediments suggesting that
lowered sea levels and the resulting decrease
in cross section produce conditions for the
maximum concentration of tidal currents.
Major scour has occured in the shallow
(about 200 m) sill between Santa Barbara
and Santa Monica Basins (Fig. 1) and this
may date from the last rise of sea level and
strong currents are presently active in the
channel. In the geologic record similar effects
must have occurred over sills between basins
and between margin basins and the open
ocean.

Deeper sills may well be sites of residual
deposits that can contain paleontologic re-
cords of the shift of depth of water masses
with changing climate. In the oceanic realm
interesting data have been interpreted for
major changes in the depth of the top of
the Antarctic Bottom Water as deduced from
sediments deposited in the Vema Gap (e.g.,
Auffret, et al., 1975; Ledbetter and Johnson,
1976).

Shepard and his associates (1969, 1973,
1977) have documented that tidal forces
operating in canyons incised in slopes pro-
duce oscillating flows within these canyons
that have tidal periods in deeper water and
progressively shorter periods as one pro-
gresses shoreward up the canyon axis. These
forces also generate internal wave trains
which will progress shoreward except where
strong seaward surface flows occur as off
the mouths of rivers. In those regions the
internal wave trains are apparently propagat-
ed seaward. Southard and Cacchione (1973)
and Cacchione (1977) have shown that in-
teraction of internal waves with different
slope gradients in canyons or over shelves
and across shelf edges can produce either
internal surf at the point of intersection of
the wave train with the bottom, surges either
shoreward or seaward, or a damping and
absorption of the wave trains. These must
strongly influence suspended sediment
movement and resuspension (Drake and
Gorsline, 1975).

Submarine canyons influence surface
wave trains because of the refraction caused
by the contrast in depth between shelf and
canyon and these effects work on the shore
zones.

Surface waves work over the shelf surface



“ and the shore and provide the main driving
force for sediments entering the coast from
rivers and shore erosion. Very long waves
(periods of 20 seconds or more) can generate
sand transporting surges over the full range
of shelf depth and are probably geologically
common (say one such train per decade) and
can resuspend fines and move sands by
traction processes either seaward or
shoreward depending on the shelf configu-
ration and wind directions (Cook and Gors-
line, 1972).

PROCESSES

Table 2 lists the major process sets that
can act to distribute basin sediments. Much
research has been done on canyon-centered
processes of the fan-canyon-turbidite plain
system (e.g., Mutti and Ricci-Lucchi, 1972;
Haner, 1971; Normark, 1970, 1973). Rela-
tively little work has been done on slope
and water-centered processes. When [ de-
scribe a system as slope-centered, for ex-
ample, I mean that the initial sediment input
from shore and shelf transport systems is
centered on the slope. Once deposited on
the slope the sediment may be stable, may
move by creep or in slides, slumps, or by
other gravity processes or as turbidity cur-
rents. In some instances currents flowing
along the slope may rework sediments by
traction or by resuspension (Heezen et al.,
1963). Slides may progressively evolve to
turbidity currents. In all of the above, the
processes act along a front over a plane
surface and the sediment distributions derive
from a linear source. Contrast this with
canyon-centered processes which generally
are initiated from the canyon head region
as slides, slumps, debris flows, etc., but can
be considered to originate essentially from
a point source as they debouch from the
canyon mouth. To complete this sequence,
Wwater-centered processes deliver sediments
from an area source as in the pelagic rain
of planktonic tests from the surface waters.
Process oriented research has generally been

TABLE 2.—Process Sets

L. River-Shore-Centered Processes
II. Shelf-Centered Processes
HI. Canyon-Centered Processes
IV. Slope-Centered Processes
V. Water-layer-Centered Processes

concentrated on one of these process sets
and even more commonly on a single proces;
within a set.

At this point let me say that it seems to
me that we need work on two large problems:
(1) process linkage, and (2) process modula.
tion. By linkage, I mean the interactions
between processes or between process sets
and also between such pairs as process and
environment, or process and deposit (see
Hampton, 1972; Carter, 1975). In the can-

yon-centered system, most workers agree }

that chains of processes occur. Mass failure
by liquefaction leads to slurry flow then to
high density fluid flow and finally to low
density fluid flow (also see Allen, 1971).
Process sets link, as in the case of river and
surf zone systems with canyon centered
systems. Because these linkages are present,
we must then recognize that synergistic ef-
fects can occur. A given process may have
apotential dispersal capacity which is limited
by the ‘‘upstream’ linked process or, con-
versely, may be amplified by the upstream
process. One can, for example, then wonder
what happens if a process overloads the next
process “‘downstream’’ in the system?

By modulation, I mean the start and stop
conditions for a process, the critical thres-
holds for various levels of transport or depo-
sition, and, in general, the factors that control
the process. One can envision “run away”
models and closed feedback process-re-
sponse models (K. S. Rodolfo pers. comm.).
What are the ‘‘capacities’” of the various
processes?

I will not attempt a review of process
literature but suggest that interested readers
begin with the short course notes by Middle-
ton et al. (1973) and Southard and Middleton
(1977), the papers of Hampton (1972), Lowe
(1972; in review), McCave (1972), Walker
(1973), Carter (1975), Coleman (1977), and
Moore (1977). All of the above have extensive
bibliographies. Many of these deal with
turbidity currents and some look at the me-
chanics of mass movement and pelagic bio-

genic processes.

In order to keep the discussions of basin
filling process systems brief, I shall omit
discussion of the river-shore centered sys-
tems and the shelf systems although these
are necessary parts of the whole and govern
the flow of material to the deep depositional
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sites. Obviously they must operate on all
terrigenous supply. In this regard, the paper
presented at the 10th International Sedimen-
tologic Congress by Karl and Gardner (1978)
is particularly interesting. They describe
three cases of canyon-shore arrangements.
In the first case the canyon is attached to
the surf zone. As sea level rises, the erosion
of the canyon head may not keep up with
the rate of rise of sea level (passive wide
shelf margins for example) and the shore
outraces the canyon. Wave refraction and
internal wave interactions may continue to
link shore and canyon but eventually the
umbilical cord breaks and the canyon sud-
denly becomes detached with consequent
immediate effects on the fan-plain system
it serves. This model would suggest that
modified sedimentary activity of canyon and
fan continue after sea level rise is well
advanced and then abruptly cuts off. The
model can be applied to river fed canyons
as well and the Mississippi submarine canyon
may provide a model for a detached river
fed canyon.

CANYON-CENTERED SYSTEM

The best known system is the canyon-fan-
turbidite plain model. With the publication
of Kuenen and Migliorini’s paper (1950) the
turbidite current has dominated the marine
sedimentologic scene although its history is
much older (see Walker, 1973). It is now
recognized that a variety of processes are
involved ranging from mass movement to
low concentration flows. I will summarize
the very detailed model by saying that sedi-
ments accumulate in canyons attached to
either long-shore drift or to river discharge
and then move down canyon periodically
either because of overloading, shock, or
decrease in bulk density (in situ gas formation
as an example). These accumulations move
initially by mass movement processes
(Shepard and Dill, 1966; Hampton, 1972) and
then, as they become increasingly mixed with
fluid and with possible inclusion of clay from
erosion of the canyon floor or canyon slope
slides, become classic turbidity currents.
Flows are initially channelized but become
sheet flows.

Modifying traction processes such as slope
Currents (Heezen et al., 1963), or tide-driven
Currents (Shepard and Marshall, 1969) can

rework these deposits and changes in gra-
dient, channel configuration, sediment con-
centration, and shifts from channelized to
unconfined flow produce sedimentary struc-
ture assemblages that can be identified with
particular environments; as for example,
canyon, inner fan channel, inter-distributary
fan, distributary mouth, suprafan, lobe, etc.
(Haner, 1971; Mutti and Ricci-Lucchi, 1972;
Normark, 1978).

Seismic signatures have been defined for
may of these environments (Payton, 1977)
and numerous ancient examples reported (see
references above). We probably now know
enough to establish boundary conditions for
hydrodynamicists and can with their assis-
tance determine quantitatively what happens
when sediment input is varied. A major
problem is the difficulty of sampling adequate
sections of contemporary fans and to estab-
lish the necessary volumetric characteristics
of the ancient sections. Most of the present
debate stems from the above problems.

At this point, I would like to emphasize
the problem of mass budgets and volumetric
measurements. A 10 cm thick turbidite cov-
ering 1000 km” (20 x 50 km) contains 10''m’
orabout 0.1 km®. This is an awesome volume
of sediment to pile up and corresponds to
a century of discharge by the Amazon River
(Gibbs, 1967; Strakhov, 1962). In outcrop,
turbidites a meter thick are common, and
in a small basin (1000 km?) involve very large
masses of input if they are basin-wide events.
This leads us to consider the question of
the dominant contributor for turbidity cur-
rents. Is it the canyon or the slope?

SLOPE-CENTERED SYSTEM

I am impressed that the slope system has
been neglected so long. The effects of mass
movement were noted in the 1950°s and
1960’s (e.g., Ewing and Heezen, 1952;
Moore, 1961; Dott, 1963) but have received
little attention until very recently. Curray and
Moore (1963) reported evidence of mass
movement on continental slopes from early
seismic profiling surveys. Emery and Uchupi
(1975) and Seibold (1974) for example have
shown the many large scale mass movements
along the slope on both sides of the Atlantic.
Lewis (1971) reported low gradient slides,
and Almagor and Wiseman (1977) have
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shown some excellent examples from eastern
Mediterranean slopes. A number of papers
(e.g., Jacobi, 1976; Embley, 1976; Haner and
Gorsline, 1978) have recently appeared and
an SEPM special publication on slope pro-
cesses (Pilkey and Doyle, in press) indicates
a wave of interest is beginning.

It is evident that mass movements includ-
ing slides, slumps, and debris flow are com-
mon, are of many scales, and can move km’
of sediment to basins. Figure 6 shows a
tentative estimate of relative areas of influ-
ence of the major delivery systems in three
borderland basins over late Pleistocene and
Holocene time.

Much of the structure mapped in subsur-
face and at surface in older basins is probably
large scale mass movement of ancient slope

material. Reference to the profile sketches
" of Emery and Uchupi (1975) of the Atlantic
~slopes will show that-slides 10’s of km in

dimension are common. Many megabreccias
ascribed to ancient margin thrusts may in
fact be large slope slides similar to those
of the present Atlantic margins. Shearman

(1976) has presented field evidence that the.

melanges of the Zagros Mountains of south-
ern Iran are in fact large scale debris flows
or slides. Some of these appear to occupy

very large channels cutinto the ancient slope,
Itis evident that the margins of ancient basins
may typically include such features which
in many instances have probably been in.
ferred to be fault zones of more classic form,

Much work is needed in the identification
of the form of mass movement and boundary
conditions and the energy sources to start
the motion. As has been done for fans and
canyons, slope systems need work on the
identifying sedimentary structuré assem-
blages and geomorphic units comparable to
the Bouma series, Mutti-Walker classifica-
tions, etc. Identification of these deposits
has been strongly accelerated by the need
for knowledge about sea floor hazards and
it is probably this need that has generated
the rapidly rising interest of the marine geo-
logic community.

WATER LAYER-CENTERED SYSTEMS

The hemipelagic contributions are the for-
gotten orphans of margin sedimentology.
These sediments by reason of their continu-
ous or near-continuous deposition carry the
record of changing environmental conditions.
Such programs as CLIMAP sponsored by
the Office for the International Decade of
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Ocean Exploration of the National Science
Foundation have shown the wealth of histor-
jcal data enclosed in these sediments (e.g.,
Hays et al., 1976). The record of sea water
surface and bottom water temperature
change since Cretaceous constructed from
DSDP data is an excellent example. Clay
mineralogy (Fleischer, 1970), carbonate con-
tent (Broecker, Turedian, Heezen, 1958;
Gorsline and Barnes, 1972) and isotopic stud-
ies of planktonic and benthonic foramini-
feral tests (Shackleton, 1967; Shackleton and
Opdyke, 1973) are examples of studies that
can be very profitable as means of correlation
and indicators of paleoclimatic changes that
in turn influence sediment supply.

This is a wide open area for sedimentologic
research and the proportion of hemipelagic
deposits is large. In great part, the marine
sedimentologists have forgotten about earth
history over the past couple of decades and
have concentrated on process. To my mind,

- a geologists’s main goal is describing the

history of the earth. Because the main record
of such change is recorded in sediments and
sedimentary rocks, we should be in the best

position to further that objective, yet we have

been passed by our paleoecology and geo-
chemical colleagues in this regard. Basin
synthesis showing change with time in the
proportion of the influence of the major
delivery systems and the correlation of the
changes with tectonic and climatic change
deduced from the hemipelagics and sedi-
ment-structural relationships is an area of
research that promises many useful applica-
tions, of which more fine scale time correla-
tions will perhaps be of greatest application
to energy resources studies.
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