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ABSTRACT

This chapter explores the critical role that kinematics plays in the construction and
analysis of geological cross sections. The structures on any admissible cross section must
arise from relative displacements that are consistent with reasonable deformation kine-
matics. Sections that violate this constraint are physically impossible. The deformation :
kinematics can be derived from a displacement field, but the scale at which the displace- <3

ment field is analyzed affects our perceptions of the movement of rocks in the cross =
section. Microscopic displacement fields associated with grain-scale deformation may be ‘i‘
derived by the standard techniques of finite strain analysis, while macroscopic displace- Seh
ment fields may be derived from the geometry of map-scale cross sections in those ‘gp
regions that have undergone uniform area strain. ggl‘]

Physical compatibility requires that the two scales be linked. In regions of uniform <75
area strain, the displacement fields at the two levels may be linked through elementary e
vector analysis. Finite strain data indicate that the central Appalachians suffered uniform i3~
area strain. Elementary vector analysis of a blind autochthonous roof duplex in the B
central Appalachians shows that: (1) the faulted stiff layer and its overlying roof layer :::g;"
have separate displacement fields; and (2) restoration of structure sections across re- =4

gions of uniform area strain requires that sections be constructed approximately parallel
to the finite strain trajectory of maximum shortening.

Another way to link the microscopic and macroscopic deformation kinematics is .
the use of “loose lines” in the deformed and undeformed states. Loose lines drawn on |
geological cross sections predict the shear strains at any point within a thrust sheet. i
These shear strains, derived solely from the geometry of structures in the cross section, !
are independent data that can be compared to measured strains, providing an additional ;
constraint for 2 cross section. Loose line analysis can also offer insight to the sequence of !
faulting in a cross section and the geometry of subsurface structures. f

Macroscopic kinematic analysis, using vector analysis and loose lines, shows that ;
the “excess section” technique for predicting depth to detachment and finding the initial

. section length contains implicit assumptions about the kinematics of deformation. Use of :
thistechniquewithoMemmhlmgthebmmdaryeondiﬁonsmayleadmhnglmNHem i
incorrect cross sections. The problem is perhaps most acute in blind thrust terranes : f
where use of the excess section technique has led to significant underestimates in the
amount of shortening in these terranes. '

Kinematic analysis suggests that “kinematic admissibility” is an additional criterion
that can constrain geological cross sections. Since lines drawn on a section have kine-
matic significance, it is possible to test a section for kinematic admissibility by attempting
to pass from its undeformed state, produced by “balancing” the section, to the deformed
state by the process of “forward modeling.” This test is applied to several examples from
the literature, and it is demonstrated that the proposed solutions can be rejected because
they fail to meet the test of kinematic admissibility.
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INTRODUCTION

The purpose of this chapter is to illustrate the importance of
kinematics in the structural analysis of mountain belts, particu-
larly in the construction and balancing of geological cross sections
and in palinspastic restoration. The kinematic history of geologic
structures can be determined by linking regional and local finite
strain analysis with section construction. Failure to consider the
kinematics can lead to serious errors in sections, while knowledge
of the kinematics provides an important additional constraint in
the section construction process.

The term kinematics refers to an analysis of the movements
of component parts of a body during its transformation from the
undeformed to deformed states. The movement of component
parts in the deforming body is best described with a displacement
field. A critical element here is the spacing between the compo-
nent parts used to analyze the deformation. As the spacing be-
tween components changes, and we shift from one scale to
another, important qualitative changes arise in our perception of
the relative movement of components parts of a deforming rock.

For example, if the spacing between component parts is on
the order of tens of meters or greater (macroscopic scale of obser-
vation), we focus on the movement of separate horses ‘or thrust
sheets. If, on the other hand, the spacing is on the order of a
centimeter or less (microscopic scale of observation), we focus on
the displacements that accompany the development of rock fab-
rics. Ultimately, the requirement of physical compatibility dictate
that the kinematics at all scales be linked. One of the aims of this
chapter is to suggest ways in which this may be done.

Macroscopic kinematics are critical to methods of section
balancing and testing for admissibility. As will be seen, the stand-
ard methods of area and bed-length balancing (cf. Dahlstrom,
1969; Gwinn, 1970; Elliott, 1979) contain implicit assumptions
of the macroscopic kinematic boundary conditions. Unwitting
use of these methods leads to significant errors in calculating the
depth to detachment in, and determining initial length of, faulted
strata. Such errors are easily avoided by applying simple concepts
of fault kinematics. Another area affected by the assumptions in
implicit areas and bed-length balancing is palinspastic reconstruc-
tion. Applying a technique that ignores the presence of a compo-
nent of shear within a thrust sheet can cause serious errors in the
local palinspastic restoration of points within the sheet, although
at the regional scale the effects are significantly diminished.

Recently, considerable attention has been focused on the use
of balancing and restoration techniques as an aid to unraveling
the structural complexity of fold-thrust belts. The aim of these
techniques is to use constraints derived from the physical Iaws to
produce balanced sections, where a balanced section is defined as
one which is both restorable and admissible (Elliott, 1980). As is
well known, however, several different balanced sections may be
drawn along a given line of section. The number of possible
cross-section solutions can be reduced, and the accuracy of those
cross sections improved, by increasing the number of constraints
applied to the section. Regional finite strain analyses (Hossack,

1979) and elementary vector analyses of macroscopic kinemati
(described in this chapter) are two constraints that have been litt
utilized in analyzing cross sections of fold-thrust belts. They prc
vide previously unassessed data on the mechanisms of deform:
tion in fold-thrust belts. Although the two data sets are closel
related (e.g., information on the state of strain within a thrw
sheet is required to determine the macroscopic displacemer
field), the data sets are determined independently of each othe;
In this way, these data can be used to check assumptions use
during section construction or to constrain possible cross-sectiol
solutions.

Strain data are critical to the construction of geologic cros
sections. A major goal in structural geology, first attempted by
John Suppe (1983), is the derivation of a section constructio
methodology which guarantees that sections so constructed wil
be “balanced” and “retrodeformable” by virtue of the construc
tion technique itself. By assuming that rocks above a hanging wal
flat undergo no shape change (there are no local displacement
gradients), Suppe (1983) was able to derive an analytical method
for section construction. Field work by Suppe and Namson
(1982) in Taiwan and by Wojtal (1986) in the Appalachians
provide evidence supporting this critical assumption for the most
external part of the foreland. However, Mitra and others (1988)
find evidence of a significant component of simple shear in the
Idaho-Wyoming thrust belt. Data supporting similar conclusions
exist for basement massifs in the Helvetics (Ramsay and others,
1983) and the Appalachians (Cloos, 1971). As both massifs are
mechanically coupled to the foreland, it is probable that a signifi-
cant shear component extends into the foreland of these belts as
well. Thus, knowledge about the state of strain within thrust
sheets is critical if one wishes to confidently apply an analytical
method like Suppe’s (1983) as an aid to determining the structur-
al geometry of a thrust belt.

DETERMINING DISPLACEMENT FIELDS
FROM MAPS .

The displacement field for any heterogenous strain is unique,
and there is no simple relation between the finite strain and the
displacement field associated with that strain. Given only the
deformed state, the displacement field for a body of rock may be
determined only if there are features whose initial and final posi-
tions are known (Ramsay and Huber, 1983, p. 58-61). Naturally
occurring features of this type are very rare (Means, 1976). How-
ever, by analyzing in two dimensions rocks subjected to uniform
area strains, it is possible to determine the displacement field
directly from finite strains.

Cutler and Elliott (1983) demonstrate that under uniform
area strain the orientation of two principal directions and the
magnitude of one principal value of the finite strain ellipse remain
constant (Fig. 1). As a result, all particles moving in the principal |
plane containing the constant axis must move in straight lines
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Figure 1. Schematic diagram showing geometric properties of uniform
area strain (after Cutler and Elliott, 1983),

normal to it. In other words, the displacement paths of material
particles are normal to the constant axis, and thus the trajectory of
this axis can be used to determine the displacement field. How
common in this type of strain in orogenic belts, and how is it
manifested?

With regard to extensional belts, there are virtually no finite
strain studies other than those of a regional and generalized na-
ture, and these questions cannot be answered for this type of
terrane. In compressional belts, however, it is well known that
uniform area strains are not common in the internal parts of these
regions where deformation occurred at greenschist grade and
higher. Although most regional finite strain analyses have been
done in the higher-grade terranes, in recent years more strain data
have been gathered in external parts of compressional belts. These
data show that, like other parts of orogenic belts, the total strain
in foreland fold-thrust belts is partitioned among three mecha-
nisms: faulting, folding, and layer parallel shortening (LPS).

Many of the finite strain data available for foreland fold-
thrust belts come from the Appalachians. Finite strain measure-
ments from the central Appalachian foreland (Geiser, 1988a;
Fig. 2) show that the characteristic LPS deformation of late
Paleozoic strata above duplexes of Cambro-Ordovician carbon-
ates is irrotational flattening. Strains lie in the flattening field with
the 1 + e;>1 + ey ~ 1.00 > 1 + e3. The fold axes are approxi-
mately parallel to 1 + e, and 1 + e; is approximately normal to

These data suggest that deformation in the external part of
the central Appalachian fold-thrust belt was a uniform area
Strain. Cutler and Elliott (1983) and Cutler and Cobbold (1985)
demonstrate that the curvature of the strain trajectories is a
function of the strain gradients and/or the strain axial ratios. For
uniform area strains in particular, the ratio of the curvatures of
the strain trajectories equals the axial ratio (Cutler and Elliott,
1983). Thus, if one of the trajectories is straight, the other must
also be. Their work suggests that examination of principal strain

trajectories of the central Appalachian foreland can provide addi-
tional insight into the nature of the strain field.

Finite strains measured in the Valley and Ridge Province
include a component due to folding and faulting, and their effects
must be removed to ascertain the LPS component. In the New
York Plateau of the central Appalachian foreland, however, this
problem does not exist. Here, the LPS strain component in rocks
exposed at the surface is three orders of magnitude larger than
that due to folding and faulting (Geiser, 1988b). As a result, it is
possible to examine the LPS strain behavior in this region without
having to remove folding and faulting strains. '

The finite strain data from the New York Plateau, derived
from the widely developed cleavage, penciling, and twinned cri-
noid ossicles and calcite grains (Engelder, 1979; Engelder and
Geiser, 1979; Slaughter, 1982), are shown in Figures 3 and 4.
The principal strain trajectories are generally parallel in the re-
gions where (1 +e3)~1 >1.10; they curve gently and diverge as 1
+e3 — 1.00. In accordance with the prediction of the compatibil-
ity equations, the trajectory divergence is most pronounced in the
regions with the greatest variability in area strain, namely those
regions where 1 + e3 — 1.00.

How significant is the divergence of trajectories if we wish to
use them to determine the displacement field? The effect is negli-
gible since the scale of the principal trajectories we are
considering is many orders of magnitude greater than the scale at
which the deformation occurred. For example, the data cover a
region whose dimensions are on the order of 1010 m2, whereas
the deformation mechanisms, operating at the level of grains or
hand specimens, affected areas on the order of 10-2 to 10-3 m.
Moreover, the maximum strains only reach values of (1 + e3)~1 ~
1.09 (Geiser, 1988b). Curvature of the trajectories is ~0.3°/km.
Given these values, the assumption of uniform area strain is a
good approximation, and the following method may be used to
find the displacement field for the region. This method can be
applied to any region where the strain field has the characteristics
outlined above.

The first step is to prepare an iso-strain map using finite
strain data from the region of interest (Fig. 3). Plots of 1 + e3
values versus distance show that where data exist, the strain gra-
dients are approximately linear parallel to this axis {Geiser,
1988b). The deformed state iso-strain map (Fig. 5) was con-
structed by assuming that strains parallel to the 1 + e3 trajectory
vary linearly with distance across the region. Finite strain values
at any point can be found by interpolation.

A relative displacement field for the region is determined by
finding the original locations of the material lines that now coin-
cide with the iso-strain contours. It is necessary to integrate strain
values along any strain trajectory (Hossack, 1979); the strain
integration method used here is shown schematically in Figure 6.
For any point, the direction of the displacement vector is given by
the principal strain trajectories, while its magnitude is given by
interpolation between the iso-strain contours.

Local displacement vectors are found by drawing an or-
thogonal grid on the deformed central Appalachian Plateau, and
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Figure 3. Finite strain data showing layer parallel shortening in the New York Plateau.

using the measured strains to determine an Eulerian specification
of each point on the grid. The reciprocal strain matrix for each
grid element is then determined by comparing the original shape
of any element in the grid with its image in the deformed state

(Fig. 7).

DISPLACEMENT FIELDS FROM GEOLOGICAL
*CROSS SECTIONS

. Duplexes are common structures in fold-thrust belts (Boyer

. and Elliott, 1982). The portion of the stratigraphic section short-

ened by imbricates between the floor and roof thrusts in the

! duplex is here called the stiff layer; the strata above the duplex are

; here called the roof layer of the duplex. The roof layer strata in a

“typical” duplex are allochthonous, that is they are translated by

‘ movement on an active roof thrust. Banks and Warburton (1986)
" showed that the cover strata above some duplexes are not dis-
' placed with the stiff layer and that these relatively autochthonous

strata are passively uplifted as the stiff layer is shortened. Shorten-
ing of cover strata in such a “passive roof” may occur by move-
ment on an emergent antithetic thrust, forming a triangle zone
(Banks and Warburton, 1986; Fig. 8). Passive roof duplexes
occur in the central Appalachians (Perry, 1978; Herman, 1984;
Herman and Geiser, 1985), but there are no antithetic thrusts at
the front of the duplex. Shortening in the cover strata occurs by
body deformation and minor thrust faults restricted to the cover
(Fig. 8). I will refer to duplexes like those in the central Appala-
chian Plateau described by Herman (1984) and Herman and
Geiser (1985) as blind autochthonous roof duplexes, those de-
scribes by Banks and Warburton (1986) as emergent autochtho-
nous roof duplexes, and the type described by Boyer and Elliott
(1982) as allochthonous roof duplexes.

For purposes of analysis, I assume that the roof layer and
stiff layer were initially the same length (bed-length balance; see
Fig. 8), that is, deformation occurred after the deposition of both
layers. I will show later that this assumption can be tested inde-
pendently. The contact between the cover and the stiff layer

w
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PRINCIPAL FINITE STRAIN TRAJECTORIES
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Figure 4. Finite strain trajectories for layer parallel shortening in the New York Plateau,

consists of two boundaries: the base of the cover strata and the
top of the stiff layer (Fig. 8a). I also assume that the deformation
of the stiff layer is restricted to flexural flow or slip, and thus
preserves bed length. This assumption can be relaxed later.
Consider a small material region P, which straddles the roof
thrust, partly in the stiff layer and partly in the cover (Fig. 9A).
movement on a single imbricate in the stiff layer, one
portion of P is attached to the base of the roof (Pc; in Fig. 9-B1),
and the other portion is attached to the top of the stiff layer (Psl; in
Fig. 9-B1). While these two points had identical initial positions,
their displacements during deformation were not the same. This
occurs because deformation mechanisms other than faulting and
flexural slip folding may occur in the cover layer. The net dis-
Placement of the roof layer during the emplacement of horses in
the stiff layer will be the sum of the following components, where
the subscript i denotes the contribution during the emplacement
of the ith horse; :
(1) Uca; = the displacement component of the roof layer
due to area constant strains, e.g., contraction and extension fault-

ing, minor folding, etc., which produce plane strain thickening or
thinning of the section. .

(2) Ucp; = the displacement component of the roof layer
due to dilational strains, e.g., pressure solution.

(3) Ucr; = the component of the total translation of the roof
layer relative to its footwall due to the motion of any given
assemblage of horses where bed length is preserved, e.g., rigid
body translation and rotation, faulting, and fault bend folding
(Fig. 9).

Note that Uca; and Ucy; will have the same signs in com-
pressional terranes, and opposite signs in extensional terranes,
Ucp; will always have the same sign as Ucri in compressional
terranes, since no significant volume increases are known to occur
in orogenic belts.

Let us now examine how the displacement of the entire

thrust system is partitioned between the stiff layer and roof layer.

To do this, I define (see Fig. 9):
Ur; = the increment of displacement of the thrust system
with respect to the “basement”, where Ui = ng; — np;. For the
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DISPLACEMENT FIELD CONSTRUCTION

—-~—~— Finite Strain Trajectory
—— lsostrain Contour
Deformed State
——————— Isostrain -Contour
- Undeformed State
\ Displacement Vector

Figure 6. Method of calculating two-dimensional displacement field.
Iso-strain contours for deformed state established from field data. Iso-
strain contours for undeformed state given by integrating the inverse of
-ﬁnitesu'aindataforthedeformedstatealongthepﬁndpalﬁnitesmin
trajectories (Geiser, 1987h). -

purposes of this example, I assume that the stiff layer suffers no
shear strains as long as it has its original dip. If the shear compo-
nent is o >0, then the error due to ignoring shear strains AUr; =
aty, where ty is the thickness of the stiff layer.

Uy; = the increment of slip lost or gained due to folding of an
assemblage of i horses where i > 1, where U may be either
positive or negative.

U; = the displacement of the hanging wall cutoff of the top of
the leading horse relative to its footwall cutoff,

Using these definitions, the following equations describe the
motions of the duplex and its cover.

Ugi=Un+ U=, ()
The displacement U.r; must be absorbed by the roof layer during

the motion of the ith horse, I assume that the stiff layer undergoes
only constant area strain and thus preserved bed length. This

h
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Figure 7. Deformed state grid given by displacement field determined from data set shown in Figure 3.

Initial length of each grid element is 20 km.

ondition can be relaxed by simply adding a term to equation 1 to
nclude the integrated area strains for the stiff layer as well.

To include the area strains in the roof layer in the calcula-
ion, let U; be the displacement of the cover:

Ud = UCA. + Uch + Uc'n (2)
vhen Ugp; = Ugp; = 0,
Ud = Uc-n' = Ui ) (3)

The relation between the displacement of the roof layer, U,
od any increment of displacement of the entire thrust system,
i, can be found by substituting the value of U, from equation
into equation 2.

Ud=UcAi*Ud>i"Uﬁ+Uﬁ @)

Equation 2 and Figure 9 illustrate how the motion of points
the roof layer is related to the motion of points in the stiff layer.
he area constant and dilational strains, Uca; and Ugp;, can be
€asured directly in the field. This is not true for the translation
“the roof layer due to the motion of the stiff layer Ur;. In

general, it cannot be independently determined whether the roof
layer strata are pinned relative to the horse (Fig. 9-B1-B2) or to
the footwall of the stiff layer (Fig. 9C). Figure 9, in which U,; =
Ucpi = 0, shows that there are three possible final positions rela-
tive to the underlying horse for a point initially attached to the
cover, P¢. It may (1) move forward due to motion imparted to it
from a more internal horse (Fig. 9By, point Pcy), (2) move
backward by “insertion” or “delamination” (Fig. 9C, point Pc;),
or (3) remain pinned at the top of the HW cutoff (Fig. 9B, point
Pcy). To further complicate matters, it is conceivable that any
given point in the duplex cover may move in different directions
at different times during the deformation history. How then may
we determine the initial position of any point in the cover with
respect to its initial position above the stiff layer?

One approach to a solution (Fig. 10) is to take advantage of
the relationship between the total displacement of the duplex
thrust system relative to the footwall of the sole fault, U, and the
total displacement of the roof layer relative to the stiff layer, U,.
The total displacement of the cover at any point where Uc=3Uq4
is the sum of each of the terms in equations 1 and 4, where U,y =
ZUcai, Uep = ZUcpi, Uer = Ui,

U;=Upp + Uy =Ugy ®)
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Figure 8. Schematic diagram illustrating the contrasts between allochthonous roof and autochthonous
roof duplexes. Note that an allochthonous roof duplex is equivalent to a flat-on-flat structure while an
autochthonous roof duplex is a ramp-on-flat structure.
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bctweentheroofhyerandthesﬁﬁlayer.%l shows the case in which the roof layer is pinned to its
horse(PointPcl.horsel).Thx'scausatranslaﬁonofthcpanofpoinththaxisattachedtotherooflayer
(point Pcy) by the amount Ucy, where Uery =y, + Ug and Ug is the displacement gained or lost due to
folding9sthowsthceﬁ'eaofrepeatingthispromforthcmoﬁonoﬂhenextborse.9Cshowsthe
relative motion of the roof layer and horse due to delamination. .

Equation 5 expresses the relationship between the displace-
meat of the roof layer relative to the stiff layer for a duplex of n
borses, where U4 and Uy, are integrated uniform area strains
(see Hossack, 1978; Woodward and others, 1986, for discussion
of strain integration techniques). Since these are vector sums, the
value of the term U, gives the translational component of the roof
layer at any point, regardless of its deformation history. Thus,
ziven the correct values for Uca and Up, we can find the values
of U at this point. Note that for a blind autochthonous roof
luplex, the value of U, will decrease to zero at the tip of the roof
brust. Given these properties and the location of the tip of the
'0of thrust, the following method can be used to find the value of

he term U at any point in a blind autochthonous roof duplex:

(1) In the deformed state, chose an arbitrary point at the bound-
ary between the stiff layer and the roof layer (Fig. 10, points P
= Pg11). (2) Remove the strains due to map-scale folding and
faulting by bed-length balancing the section (Fig. 10b). (3) Re-
move the LPS strains by using the values for Uca and Up (Fig.
10c). Once this is done there are three possible results (Fig. 10c).

(1) If there has been backthrusting (delamination or inser-
tion), the portion of the deformed-state point P attached to the
roof layer will now be located ahead of (i.e., in the direction of)
thrust motion, its apparent image point (Ps11) in the stiff layer
(Fig. 10cl).

(2) If the point Pg; had initially been moved forward with
the entire roof layer due to movement on a more internal thrust,
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DEFORMED STATE SECTION

BEFORE LPS RESTORATION
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Figure 10. Illustration of how the three possible final positions of an arbitrarily chosen point (P;) at the
roof layer—stiff layer interface may be used to determine the relative motions of the roof layer and the

N stiff layer. In the first step, before LPS restoration, all faulting and folding strains are removed. In the
second step a correction factor is applied to the roof layer by integrating the finite LPS strains measured
in the roof layer and extending or contracting the roof layer accordingly. After this LPS restoration the
points of contact between the roof layer and the stiff layer are now in their initial positions. If
backthrusting or delamination has occurred, the point P; appears to have moved in the same direction
as the stiff layer. For the pinned case, P; has undergone no motion relative to the stiff layer, while in the
forward-thrusting case the point P; appears to have moved backwards relative to the stiff layer. Since
the initial position of all points in the undeformed state is now known relative to the initial, it is possible
to find their positions in the deformed state and identify the associated displacement vectors.
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then the restored position of the point, p’c, will be located behind
(i.e., in the direction opposite) thrust motion, its apparent image
point pg); (Fig. 10c3).

(3) If the roof and stiff layers were either pinned to each
other or the deformation history such that the sum of the transla-
tions cancel each other out, then the point pc will coincide with
the point pyy; (Fig 10c2).

With the true position of the point P, found, a displacement
vector for the roof layer can be constructed (Fig. 10d). The
displacement vectors for the stiff layer and roof layer coincide
only where the roof layer is pinned to the top of the hanging wall
ramp.

The conclusions drawn from this analysis are: (A) In
general, a blind autochthonous roof duplex will have two differ-
ent displacement fields: one for the roof layer and a second for the
stiff layer. (B) Proper restoration of structure sections across any
terrane subjected to a uniform area strain requires the sections be
constructed approximately parallel to the direction of maximum
shortening.

HISTORICAL DEVELOPMENT OF THE CONCEPTS
OF SECTION BALANCING

Some concept of the kinematics of the deformation process
s a sine qua non for any method of constructing a balanced cross
iection. The truth of this statement is evident from the inception
f the methodology. Chamberlin (1910), who first used the idea
f constant area deformation to calculate the depth of folding,
issumed that the deformation reflected the folding of shells of
rarious thicknesses. This kinematic model, decidedly thick
kinned, was suggested to him by a set of fracture experiments
onducted by Daubre. Interestingly, the experimental conditions
hat Chamberlin referred to were uniaxial shortening,

In 1933, Bucher re-examined Chamberlin’s work in light of
lailey Willis’s (1894) experimental results and pointed out that,
lthough the conceptual framework of area preservation was
ound, the details of the methodology were not. Their application
> the deformed sections produced by Bailey Willis did not return
le depth to detachment observed in the experiment. Bucher
oted that when one used what is now known as area balancing
Fig. 11), the results were in good agreement with Willis’s
xperiments.

" The reason Bucher’s method works, whereas that of Cham-
erlin does not, is that the geometric relations between the de-
'rmed and undeformed state for the “excess section” calculations
‘e precisely those of Willis’s experiments, i.e., volume-constant
lane strain with physical boundaries that constrain the ends of
e deforming body with no net angular shear strain (Fig. 12).
hus, the integrated strain of the entire body is that of pure shear.
hamberlin, on the other hand, based his calculations on a differ-
It set of geometric boundary conditions, that of the folding of a
t of shells of unequal thickness. Since Willis’s experiments were
much better approximation of the actual global kinematics of
reland fold-thrust belts than Chamberlin’s conception, the

methodology developed by Bucher is much more successful than
that of Chamberlin. This contrast in the results produced by two
different kinematic models for area balancing serves to illustrate
the important role that kinematic models play in structural analy-
sis. I use the term “global pure shear” o refer to this set of general
or global boundary conditions in which the boundaries of the
entire body under consideration undergo no net angular shear. If
the physical boundaries of a body deformed under similar condi-
tions have a non-zero but constant displacement gradient, I use
the term “global simple shear.” Use of the term “global” refers to
the entire body under consideration (see Fig. 13).

Bucher’s (1933) methodology has carried down over the
years with only minor modifications (Goguel, 1962; Laubscher,
1961; Dennison and Woodward, 1963; De Sitter, 1964; Dahl-
strom, 1969; Gwinn, 1970; Hossack, 1979; Woodward and oth-
ers, 1985). This technique, outlined in Figure 11, consists of
defining a stratigraphic horizon, typically one about which the
most trustworthy data exist, as an enveloping surface. Points are
chosen where, on structural grounds, it is believed that there has
been no significant movement between the enveloping surface
and the underlying beds (vertical lines through these points are
pin lines). The excess section between the enveloping surface and
its inferred base is used to calculate either the depth to detach-
ment or the shortening of the section, depending on which varia-
bles in the equation shown in Figure 11 are known.

A critical question that must be answered concerns how the
kinematics of Wilis’s experiments relate to the mechanism of
shortening thrust sheets in foreland fold-thrust belts. There are
three possible ways a thrust sheet may shorten (Geiser, 1988b):
faulting of strata, folding of the section, and differential layer-
parallel shortening (Fig. 14). As Figures 11 and 12 show, Willis’s
experiment and the excess section method treat only folded strata
under global pure shear. What happens when we try to apply this
method to other structural settings? Is it possible to get correct
results? What happens if we change the global boundary
conditions?

PALINSPASTIC RESTORATION AND THE
ROLE OF LOOSE LINES

In order to answer these questions, it is necessary to make a
clear distinction between palinspastic restoration and the calcula-
tion of the. shortening of a thrust sheet by the excess section
method. A very useful and important concept is that of a “loose
line” (Elliott, 1980). A loose line, as defined by Elliott, is a line
orthogonal to the sliding surfaces in the deformed state whose
shape is allowed to change when returned to the undeformed
state (Fig. 15). Pin lines, on the other hand, remain normal to the
sliding surface directions in both the deformed and undeformed
state, i.e., there is no net angular shear strain across them,

Loose lines inserted into a section provide information on
bedding parallel slip during deformation. Loose lines can be in-
serted in a deformed or undeformed section. I call loose lines
inserted in the deformed state “deformed state loose lines™ (line
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A’B’, Fig. 15), and call those that are orthogonal to the sliding
surfaces in the undeformed state “undeformed state loose lines”
(AO, Fig. 15). In order to use loose lines, bed length must be
conserved during deformation. _

Returning a deformed state loose line to its undeformed
position gives the palinspastic location of the line in the unde-

oAl —»

Figure 11. Fundameatal principles of bed length and area balancing, and their use in the construction of

formed state as well as information on the shear strain within the
sheet (Fig. 15). A deformed state loose line inserted above a flat
deformed under global pure shear will restore to a line normal to
the sliding surfaces, whereas such a line under global simple shear
will not.

An undeformed state loose line creates a displacement pro-
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KINEMATICS OF GLOBAL PURE SHEAR DETACHMENT {
Willis Model
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Figure 12. Figure illustrating the relationship between the Willis (1894) squeeze box experiments and
the excess section, area balance method. Note that kinematic boundary conditions are those of global
pure shear and that the kinematics are those of folding of shells (see Fig. 14),

: (line A’Q’, Fig. 15), which gives information on the state of EXCESS SECTION ANALYSIS OF COVER STRATA
uin within the sheet. For a region subjected to pure shear, an DEFORMED BY LPS
leformed state loose line remains normal to the sliding surfaces
1 deformation. For nonhomogenous strain within the sheet or The excess section technique cannot be applied to sheets
the boundaries of a section under global nonhomogeneous ~deformed by LPS because they have not suffered constant area
'ple shear, the initially orthogonal line will have a curved deformation. The depth to the detachment beneath a thrust sheet
lectory like line AB in Figure 15. The tangent of the angle shortened by LPS must be determined independently. Shortening
Ween the undeformed state loose line and the sliding surfaces  of the thrust sheet, on the other hand, can be calculated by
the deformed state is the angular shear strain. The displace- directly measuring finite strains in the sheet and applying strain
0ts and strains of a deformed state loose line are the reciprocals integration techniques (Hossack, 1979; Geiser, 1988b). One
hose of an undeformed state loose line. problem with strain integration techniques is that strain data are g
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Figure 13. Schematic diagram illustrating the concept of global strains. Note that the case of global
simple shear requires that the basal decollement has not been reoriented relative to the global principal

typically restricted to a single horizon. In order to calculate the
shortening in the entire thrust sheet, one is forced to project this
data to depth, assuming that the vertical strain gradient is zero, a
condition that is physically unlikely.

Figure 16 shows the difference between the palinspastic po-
sitions of lines determined using Hossack’s (1978) method, where
the vertical strain gradient is assumed to be zero (global pure
shear) and the depth to the detachment is assumed, and those
determined by assuming that there was a non-zero strain gradient
(global simple shear). The difference arises because the excess
area must restore to a rectangle under global pure shear, whereas
the actual undeformed shape is the triangle AA’C given by the
restored deformed state loose line A’C (Fig. 16).

This difference in the restored shape of the region defined by
the deformed state loose line, in contrast to the rectangle of the
excess section method, produces an error 1/1, = at/1; in the
calculation of the initial section length, where t is the depth to
detachment and o is the average shear strain (Mugnier and Via-
lon, 1986). The misidentification of the global kinematics can
produce cither an overestimate or an underestimate of the short-
ening, depending on the sense of shear. As the expression for the
error shows, the longer the section the smaller the error.

EXCESS SECTION ANALYSIS OF FOLDED SHEETS

Figure 17 is an area-balanced section of folded strata above
a detachment horizon. This computer-generated section illustrates
pitfalls inherent in the excess section method. The deformed state
section was constructed using an area-constant flexural-flow

model. An arbitrary depth to detachment has been used, creating
a cushion of subfold material (Laubscher, 1977). This cushion of
material is analogous to that caused by underflow of the ductile
material into anticlinal cores in the New York Plateau
(Wiltschko and Chapple, 1977) and the Jura (Laubscher, 1977).

As noted earlier (Figs. 11 and 12), the excess section method
assumes no flow of material from outside the boundaries of the
region in which the calculation is being made (lines ¢d1, m-n,
Fig. 17). Moreover, the method requires that at least one of the
boundaries is pinned to the detachment as well, i.e., itisa regional
pin line (sec Woodward and others, 1985). To see why this is so,
we must carefully consider the kinematics of Figure 17. The
following discussion considers only the consequences of a purely
geometric analysis and does not incorporate finite strain data on
LPS.

The first step in the analysis is to construct pin lines £d1
and m-n at the point where the folded strata return to their
regional dips and define the excess section in the structure. Using
this area and the depth to detachment we can find the initial
length of the section, 1o, shown as the line #b in Figure 17B.
Comparing this to the sinuous bed length of the fold (portion ab
of line 1-b, where #; = ml; Fig. 17), we find that the initial
length is greater than the sinuous bed length, implying LPS has
occurred. From our initial conditions, flexural flow with a sub-
fold cushion, we know that this is an error. However, if we apply
the excess section method, which is based only on the geometric
configuration of the deformed state, the error is unrecognizable.
The method fails to produce the correct undeformed state be-
cause kinematic boundary conditions implicit in the excess sec-
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IMBRICATE THRUST

DECOLLEMENT THRUST

LPS THRUST

Figure 14. Modes of thrust sheet deformation (from Geiser, 1988b).

on method have not been maintained. There is a flow of ductile
1aterial beneath the fold, even if the line m-n is a pin line for the
tyers that deformed by flexural flow.

The excess section method also fails to give correct restored
ositions for material lines in a section because it is based on the
ssumption that one of the pin lines is fixed relative to the de-
ichment. To illustrate that this need not be true, we assume that
n again marks the return to regional dips, and we forward
10de] the undeformed body abed (Fig. 17B) into two deformed
ates. State I has boundaries al-d1 and bl-cl, and State IT has
oundaries a2-d2 and b2c2. In State II, the entire body abed has
oth folded and been translated through line m-n, which we
ssumed was pinned. The error produced by this assumption is
lown in Figure 17, where the bodies a2mnd2 and almnd! are

restored to the al’bed1’ and a2°bed2’. The error is the difference
between the line #°-d1’ and the lines a2’-d2’ and al-dl’,
respectively. An error due to this boundary condition violation is
clearly not restricted to folded sheets but is a general problem of
all local pin lines (Woodward and others, 1985).

EXCESS SECTION ANALYSIS OF
THRUSTED STRATA

Thrusts whose tips reach the surface are emergent thrusts
(Boyer and Elliott, 1982), or erosion or surface thrusts (Hills,
1967) (Fig. 18). They consist of a fractured stiff layer only.
Thrusts whose tips never reach the surface during deformation
are blind thrusts (Thompson, 1979) and consist of a stiff layer and
roof layer (Fig. 19). Both types of thrusts may form under condi-
tions of either global simple shear or global pure shear. As can be
seen in Figures 18 and 19, the general geometries of blind and
emergent thrusts are similar. Despite this superficial geometric
similarity, the method for area-balancing blind thrusts is different
than that for emergent ones. The reason for this is evident from an
inspection of the deformed and undeformed states of the two
types of fracture thrusts.

Emergent thrusts

Consider the emergent thrust shown in Figure 18. The por-
tion of the hanging wall displaced to a position above the ramp as
the stiff layer shortens—the ramp anticline—is the “excess sec-
tion” of the excess section method. If the boundary conditions for
this sheet are global pure shear, the true shortening of the stiff
layer can be calculated using this excess section and the known
depth to the detachment. This cannot be done if the boundary
conditions for this sheet were global simple shear, because simple
shear within the sheet violates the conditions on which the excess
section method is based. Restoring this section using the excess
section method, we find that the line P*-O’ restores to a-b. If there
were any bedding parallel simple shear in the sheet, the true
restored position of line P’-O’ might be A-B.

A solution to the problem exists if it is possible to do bed-
length balancing (see Woodward and others, 1985, for details on
the methodology) along with the excess section calculation. This
requires that three conditions be met: (1) the dominant deforma-
tion mechanism is flexural flow; (2) the hanging wall and foot-
wall cutoffs can be identified; and (3) at least one pinning line can
be found. If these conditions are met, then it is possible to exam-
ine the internal strain of the sheet using a deformed state loose
line as previously outlined and adjust the boundaries of the sec-

tion accordingly.
Blind thrusts and “kinematic admissibility”

For sections of blind thrusts, the possibility exists for an even
larger error from the application of the standard area-balance
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LOOSE LINES

Deformed State

AB:= Loose line, deformed state.
AOQ'= Inverse loose line, deformed
state (displacement profile) -

Undeformed (Restored) State

A
7‘\7\
Bl s
a4 ./ \\
—— .f_._.—-_ \\ ———"_.
_/‘.-._._._b T__ i
B 0=B 0 AO=Loose line, undeformed state
ABzInverse loose line, undeformed
state.

Figure 15. Mustration of the nature of deformed state loose lines and undeformed state loose lines.

Given: Deformation shown by line AB’

PACO = Restoration assuming pure shear.
AC = Palinspastic location of line AC under simple shear.

Figure 16. Hlustration of the types of errors that can arise by the assumption of layer parallel shortening
with a zero displacement gradient in terrane with a non-zero displacement gradient. In the case shown,
an arbitrary deformation, indicated by line A’B’, bas been applied to the sheet. The assumption that the
displacement gradient is O results in the deformed state loose line, A’C’, being restored to the position
PO, whereas its actual position is indicated by the line AC.
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Figure 17. Errors in palinspastic reconstruction of a fold thrust due to the

assumption of global pure shear. Under nonhomogeneous simple shear, a €2
line initially normal to the slip surface does not remain normal after
deformation. In effect material is moved beyond both the assumed pin- | —4L—! .
ning lines. a’ a2
Excess
[Section } /
dr d dt" 47 ¢
DEFORMED STATE SECTION
3
\\\\\\\\ £l
, Ax \ ;3"
=
. RN 3
2
BALANCED - UNDEFORMED STATE SECTION
A"Al : 8lg K (Il, OP-ab Simple Shear Case
?y’ ) P
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Figure 18. Dlustration of problems of utilizing the excess section method to area balance in emergent
thrust terranes where flexural flow is the dominant deformation mechanism. Application of the excess
section method to a thrust sheet, subject to the shear gradient shown, produces the error. The actual -
palinspastically restored position (determined by bedlength balancing) of the deformed state loose line
O’P’ is AB rather than the position ab given by the pure shear assumption.
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FAULT KINEMATICS
KINEMATICALLY ADMISSIBLE SECTIONS

Bulldozer

Delamination Forward Translation
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Figure 19. Application of macroscopic kinematics to the analysis of a geological cross section in blind
thrust terrane. The three kinematically admissible sections show deformed state fault trajectories, which
permit the components of the section to move from the undeformed state to the deformed state. The
kinematically inadmissible section does not allow this, indicating that it is not a possible solution. Note
that all sections are balanced (restorable and admissible). Figures 22 and 23 illustrate examples from the
literature of kinematically inadmissible sections. ‘
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method. The error arises again from the nature of the macro-
scopic kinematics. From a purely geometric standpoint, the stiff
layer shortens by doubling its thickness, whereas the roof layer
can shorten only by draping over the ramp anticline of the stiff
layer. Since much more shortening is accomplished by doubling
thickness than by passive folding, there would appear to be a
much larger shortening of the stiff layer than the roof layer.

Assuming area-constant plane strain and constant bedding
thickness, there area only three ways that the shortening in the
roof and stiff layers can be the same: (1) the stiff layer may insert
itself beneath the roof layer, resulting in backthrusting over the
top of the stiff layer (delamination, Fig. 19); (2) the floor thrust
may climb section and join the roof thrust, with the displaced
roof layer carried off the section (forward translation, Fig. 19); or
(3) this displacement of the roof layer may be absorbed by imbri-
cation or formation of folds in the roof layer in front of the duplex
(“bulldozer”, Fig. 19). An alternative here is to relax the area-
constant condition and allow the displacement of the roof layer to
be absorbed by LPS either in front of the forelimb, over the
forelimb, or in some combination (Fig. 14). Obviously, all three
deformation modes may accommodate some fraction of the dis-
placement of the roof layer, but this does not affect the kinematic
relations shown in Figure 19.

In any case, the faults that allow the motion must appear in
both the deformed state section and the undeformed state section.
I use the term “kinematically admissible” to describe those sec-
tions whose deformed state geometry is such as to allow those
sections to reach the deformed state section by a physically possi-
ble route. Sections which do not have this property are kinemati-
cally inadmissible. The process whereby the kinematic admiss-
iblity of a section is tested, by going from the undeformed to the
deformed state, is referred to as “forward modeling.” In Figure
19, constructed with area-constant plane strain and constant bed-
ding thickness, the three kinematically admissible solutions for
blind imbricate thrusts show that, depending upon which of the
solutions is used, the stiff layer may be either initially longer than
the roof layer or of the same length.

The critical point with regard to balancing these sections is
that stiff and roof layers must be treated independently (Fig. 20).
If the excess section method is used, with an arbitrary strati-
graphic horizon, chosen as the enveloping surface, and if this
Borizon is part of the cover sequence, there is an overestimate of
the thickness of the units deforming by similar macroscopic
kinematics. The result is an underestimate of the total shortening
of the section (Fig. 20). On the other hand, as long as the envelop-
ing surface lies within the stiff layer and only the thickness of the

‘units included within the enveloping surface is used, a correct
answer will result.

Examples of this type of error are common in the literature.
For example, Gwinn (1970, Fig. 3) chose the top of the Devo-
tian Oriskany Sandstone as his datum for calculating the excess
section in the western panel of his cross sections through the
Central Appalachian Valley and Ridge Province. The actual top
of the stiff layer in this section is near the middle of the Ordovi-

cian Reedsville Formation. In his central panel, Gwinn restricts
imbricate thrusts to the Ordovician Bald Eagle Formation
through the Lower Devonian, but he places his enveloping sur-
face at the top of the Middle Devonian Hamilton Formation. As
a result, Gwinn’s estimates of shortening for both panels is incor-
rect. The only panel without problem is the eastern one, as
Gwinn chose a surface within the stiff layer for his enveloping
surface (the top of the Cambrian Conococheague Limestone).

Palinspastic maps by Dennison and Woodward (1963)
suffer from the same problem, for they chose the top of the
Devonian Onesquethaw Limestone for their enveloping surface.
Since this unit is well within the roof layer, their restoration
almost certainly significantly underestimates the shortening of the
central Appalachians. Unfortunately, Dennison and Woodward
(1963) do not present sufficient data to allow recalculation, since
they show only the form of the deformed roof layer and leave out
the critical stiff layer geometry. -

Gwinn’s sections do contain this information, Consequently
I have been able to use one of them (Fig. 3 in Gwinn, 1970) to
illustrate how to recalculate the shortening using the stiff layer
geometry. For the western panel of Gwinn’s Figure 3, the true
shortening is 16 miles, rather than Gwinn’s estimate of 12 miles,
an error of 22 percent. The problem is greater in the central panel
wher the stiff layer thickness is grossly overestimated; here the
shortening of the Ordovician Bald Eagle-lower Devonian inter-
val is 3.9 miles, rather than Gwinn’s estimate of 1 mile, resulting
ina 74 percent underestimate of the shortening.

The displacement of the roof layer relative to the stiff layer
means that there is no pinning line common to both roof and stiff
layer. Thus, one of the requirements for the area balance method

‘has been violated. In effect, part of the section that should be

included in the excess area has been moved off the section in the
direction of tectonic transport (assuming area-constant plane
strain).

How then do we balance a section in a blind thrust terrane?
The section can be balanced only if the $tiff layer can be identified
(Figs. 18 and 20). The identification of this layer can be made
using prior stratigraphic knowledge. If the thrust tips are exposed
on a map, stratigraphic separation diagrams can be used to differ-
entiate between ramp-forming units (the stiff layer) and flat-
forming units. If the stiff layer itself has undergone penetrative
shortening, then this must be compensated for during balancing.

ANALYSIS OF GEOLOGICAL CROSS SECTION
USING LOOSE LINES

A kinematically admissible section is one drawn with the
macroscopic kinematics in mind. In addition, even if the strain
history is not known, the section must also be compatible with
independently measured strains, which constrain the mesoscopic
and microscopic kinematics. Loose lines can be used to provide
information about the deformation history and the state of strain
at different positions within a thrust sheet.

To outline a method for using loose lines to analyze sections,
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Figure 20. Schematic diagram showing how underestimation of shortening occurs if the excess section
method based on the Willis folding model is used in blind imbricate thrust terrase.

I'will examine the cross section in the central Appalachian Valley
and Ridge Province in western Virginia constructed by Perry
(1978). This analysis is directed at answering the following ques-
tions: (1) Is the geometry of the section correct? (2) What is the
sequence of faulting: break back or break forward? (3) What is
the state of strain implied by the section geometry? Perry’s section
is an acceptible solution if it is both restorable and admissible
(Elliott, 1980).

I begin by drawing a loose line above the hanging wall flat
in the most internal horse since it has remained approximately
horizontal. Any bedding segment that departs from horizontality
experiences bedding parallel simple shear, regardless of the global

strain state (cf. Suppe, 1983). Thus, the best position for a loose
line to test the state of strain is above a hanging wall flat that has
not traveled over a footwall ramp. This loose line can be used to
provide information on the state of the global strain as well as to
check the kinematic admissibility of the section.

The undeformed fracture array, created by laying off bed
lengths measured in the deformed state onto the area-balanced
stiff layer, is shown in Figure 21 as the uncorrected fracture array.
Faults 1-2 and 3-4 are admissible as break forward structures.
Fault 5-6 is not, however, as its geometry is concave in the
direction of tectonic transport. The section is still admissible if the
faults formed in a break-back sequence, where fault 5-6 propa-
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Figure 21. Analysis of geological cross section using the stiff layer method. This section (from Perry,
1978) illustrates some of the problems encountered in balancing autochthonous roof duplexes. Roof and
stiff layer do mot have equal line lengths. Restoration of the stiff layer and use of loose lines provide
evidence that the fault with cutoffs 5 and 6 is part of a break-forward sequence. An admissible section is
created by adding bed length to the most external horse. Note that the final displacement profile (A-C)
indicates nonhomogeneous simple shear in hanging wall flat.
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gated across a fault-propagation fold (Suppe, 1985) or formed as
a break thrust (Willis, 1894). As constructed, the section shows
the thrust as a break thrust, since the horses were lifted off the
detachment and material was injected beneath the horses. The
problem is to find some additional information that will allow us
to determine which solution has a higher probability of being
oorrect.
. The bedlengths to the remaining faults and the loose line,
’-B’) are laid bff as well without attempting any correction. The
uncorrected fracture array shows that the remaining horses have
~ the same problem (if it is a problem) as fault 5-6, i.c., they are
concave in the direction of tectonic transport. Moreover, the
undeformed image of the loose line (AB, dash-dot line in Fig. 21)
indicates that bedding parallel shear must have occurred within
the stiff layer, and that this simple shear reverses its sense through
the strata in the stiff layer. Intuition suggests that such a deforma-
tion is unlikely, but this fault sequence cannot be rejected a priori.
If we correct the undeformed fault array so that it is admiss-
ible as a break-forward sequence, we get an interesting result. The
Correction is made by adding bed length to the horse bounded by

faults 3-4 and 5-6 in both the deformed state and undeformed
state sections (Fig. 21). Bedlength is added to the base of the
horses since there is less hard data on the deep subsurface
configuration of the horses. This correction changes the restored
image of the loose line to A-B’, eliminating the shear sense rever-
sal. The displacement profile that results is still questionable since
it indicates a dextral shear sense rather than a sinistral shear sense,
which might be expected given the direction of tectonic transport.

If one were using Elliott’s original concept of admissibility,
utilizing only the undeformed fracture array, there would be no
other place to go at this point and the section would be consid-
ered balanced. Using the loose lines to generate displacement
profiles, it is possible to test the geometry of the deformed state
section to see if it is compatible with other strain states. Dis-
placement profiles, whether derived from rock structures or from
a proposed cross-section solution, must be admissible. Construct-
ing a cross section with an admissible displacement profile is
simply carrying the notion of admissibility one step further. The
use of kinematics here adds to the concept of admissibility as well
as providing a further constraint in section construction.
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To conclude, this brief illustration shows that loose lines are
useful kinematic indicators. Since loose line analysis provides a
means to investigate whether a given deformed state geometry is
compatible with finite strains, it can help determine if a section is
admissible.

ANALYSIS OF GEOLOGICAL CROSS SECTIONS
USING MACROSCOPIC KINEMATICS

Central Appalachian Valley and Ridge:
The Juniata Culmination

A common problem encountered in constructing cross sec-
tions in blind thrust terranes is how to fill space in structural
culminations, where the thickness of the stiff layer is often
doubled. There are two ways that this may be accomplished:
(1) where the proportion of hanging wall flat on footwall flat is
large (ie., —>1.00), as in an allochthonous roof duplex shown in
Figure 8 (a “flat-on-flat™ solution); and (2) where the proportion
of hanging wall ramp on footwall flat is —>1.00, as in the autoch-
thonous roof duplex of Figure 8 (a ramp-on-flat solution).

Since both types of solutions can be successfully balanced
(i.e., restorable and admissible), it is impossible to find an error in
the solution by balancing alone. Only by considering the macro-
scopic kinematics and its consequences in terms of the resulting
finite strains can one find the error. Perhaps the most critical
observation for this analysis is that a geological cross section
represents a slice through physical reality, and as such, every line
in a section has physical meaning. Any fault shown in a section
represents a boundary along which significant motion occurred.
Conversely, the absence of a fault or other structure indicating
differential motion, such as a folding or layer parallel shortening,
means that no motion occurred between adjacent rock masses.

In pratice, then, every kinematically significant structure
must be shown on the section. Behind this seemingly trivial
statement is an important reality. Considering the kinematic sig-
nificance of each line on the section forces one to consider the
kinematic significance of structures in the rocks. The kinematic
significance of lines on the section are most easily understood by
forward modeling. In forward modeling, one often encounters
new information which indicates: (1) the section could or could
not*have formed in the manner implicit in the geometry of de-
formed section, (2) the section requires a geologic history that is
either incompatible with or different from that suggested by other
geologic data, or (3) the section requires that structures be added
or subtracted to make it kinematically admissible. These predic-
tions may be tested either by direct field observation or reinter-
pretation of existing geologic data.

The section shown in Figure 22 was published by the Penn-
sylvania Geological Survey (Berg and others, 1980) and repre-
sents a possible solution to the problem of space filling beneath
structural culminations. Other examples of sections that use a
solution similar to that shown in Figure 21 can be found in
Roeder and others (1978), sections V1-V4; Woodward (1985),

sections 3-8; and Lash and others (1984). If we examine the
deformed section in Figure 22 and its area-balanced undeformed
image, we find two problems characteristic of most sections
through autochthonous roof duplexes. First, the restored length of
the roof layer is much less than that of the stiff layer; i.e., the
section does not bedlength balance. Second, what are the macro-
scopic kinematics that might explain this imbalance?

The problem of the missing section in the roof layer can be
resolved by a combination of rigid body translation of the roof
strata off the stiff layer with layer parallel shortening in the roof
(Herman and Geiser, 1985; Herman, 1984; Bowen, 1986; Geiser,
1988b). The problem of the macroscopic kinematics is more
difficult to resolve. Berg and others (1980) proposed a “flat-on-
flat” solution. To determine whether or not the section is kine-
matically admissible, we must be able to find a physically possible
method of placing one 50-km-long section of stiff layer on top of
another. Moreover, the deformation history predicted by the
model must be compatible with existing finite strain data as well
as the structural geometry.

The deformed state section (Fig. 22) shows no significant
faults separating the roof layer from the underlying horses. The
absence of a fault means there can be no delamination, either by
rigid body translation or layer parallel shortening of the roof. As
there is no evidence for imbrication of the roof layer, we are
apparently dealing with layer parallel shortening. If so, then all of
the missing roof layer (about 95 km in length; Herman, 1984)
must be absorbed in deformation of cover strata off the section to
the west, in the New York and Pennsylvania Plateaus. This hy-
pothesis requires that: (1) the deformed state fracture array makes
it possible to move the missing 95 km off the section; (2) the
geology of the section to the west be compatible with absorbing

the missing section; (3) the deformation predicted for the rest of

the section be compatible with the geology of the culmination
and the more internal parts of the section.

Examination of the area-balanced undeformed section
(Fig. 22) reveals that there are serious problems in meeting these
requirements. Although the roof strata are assumed to be pinned
to the stiff layer, restoration of the horse above fault 4 requires a
separation of almost 12 km, opening a gap (BB") in the roof layer.
Two other such gaps (C'C" and D'D"), about 10 and 15 km in
length respectively, are also created. The deformed state section
does not have a fault array that allows the missing section to be
moved to the west (even if the section had such an array, there is
no means of accommodating more than 40 km of shortening in
the plateau, most of which must be accommodated by layer
parallel shortening) (Nickelsen, 1966; Geiser, 1988b). Moreover,
since the roof layer is supposed to be pinned to the stiff layer,
layer shortening must begin at the Allegheny front. This too is
incompatible with the finite strain data, which show the LPS
strain continues across the Allegheny front into the Juniata Cul-
mination (Faill, 1977; Bowen, 1986).

There are three possible ways to account for the missing
material: (1) emergent backthrusts of the type described by Banks
and Warburton (1986); (2) highly inhomogeneous pressure solu-
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Figure 22. Proposed flat-on-flat solution for Juniata culmination of the central Appalachian Valley and
Ridge Province (Berg and others, 1980). Kinematic analysis utilizing deformed state and undeformed
state sections illustrates the types of problems that show the section to be kinematically inadmissible.

tion similar to that observed in the Umbrian Apennines (Geiser,
1988b); or (3) having a significant part of the deformation occur
prior to the deposition of the roof layer.

Surface mapping shows no evidence for emergent back-
thrusts with displacements of 10 to 15 km. Using Elliott’s (1976)
7 percent “bow-and-arrow” rule, such backthrusts would have
map lengths of 130 to 150 km and would be difficult to miss in
the field. The second mechanism requires an enormous volume
loss—the 10 to 15 km of missing bed length now occupies a
region 1 to 5 km in length. Not only would this be an unprece-
dented phenomenon, this hypothesis conflicts with finite strain
data from the Juniata Culmination (Bowen, 1986) and the Valley
and Ridge Province. Other strain measurements in the Valley and
Ridge Province (Faill and Nickelsen, 1973; Geiser, 1974; Faill,
1977, Geiser and Engelder, 1983) show that, although strains are
not homogeneously distributed, they are pervasive, and volume
loss is nowhere greater than 27 percent. Because there is no
Physically possible route from the restored section to the de-
formed section that is inconsistent with map and finite strain data,
the cross section is kinematically inadmissible.

Herman (1984) and Herman and Geiser (1985) have pro-
posed a kinematically admissible solution for this region. Their

solution uses a “ramp-on-flat” geometry for the duplex. The miss-
ing section is accounted for by having approximately 40 km
absorbed by LPS in the Appalachian Plateau and the remaining
40 to 50 km absorbed by a system of local backthrusts with
associated layer parallel shortening and folding as described by
Geiser (1988b).

Southern Appalachian Valley and Ridge

Roeder and others (1978, section V4) proposed a flat-on-flat
solution for the southern Appalachian Valley and Ridge
(Fig. 23). The geometry of this section differs only slightly from
Figure 22, and the restored section has problems similar to those
noted for the Juniata Culmination section and for blind thrust
culminations in general. Here, the duplex consists of faults 1 to
10, and the entire stratigraphic sequence is the stiff layer. This
eliminates both the delamination and imbrication models from
consideration and requires that the missing section be accounted
for off section, in the direction of tectonic transport.

In contrast to the example from the Juniata culmination, the
tip of the sole thrust is placed in the section. This makes the
kinematic consequences more dramatic than in the Juniata cul-
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Figure 23. Analysis of proposed flat-on-flat solution for section V (Roeder and others, 1978) located in
the southern end of the central Appalachian Valley and Ridge Province. Kinematic analysis utilizing
deformed state and undeformed state sections shows that the proposed solution has problems similar to

those shown in Figure 22.

mination.lnthiscase,asumingthattherooflayerispinnedto

“the hanging wall requires all of the displaced cover stripped from
the footwall flat (about 50 km of section) to undergo extreme
volume loss and collapse into the tiny area bounded by the tip of
the sole thrust and the most external splay. Similar comments can
be made with regard to sections V1, V2, and V3 in Roeder and
others (1978).

One possible explanation is that Roeder and others (1978)
located the tip of the sole thrust in the wrong place and that this
portion of the Appalachian Plateau suffered layer parallel short-
ening like that observed in Pennsylvania and New York. Field
work by D. Wiltschko and students (personal communication,
1986) and my own field reconnaissarice shows that layer shorten-

ing cannot account for all of the missing bed length. Only small
amounts of LPS has occurred in this region. Surface mapping
indicates that emesgent thrusts cannot account for the missing bed
length either. I conclude that this section is kinematically inad-
missible and that an alternative solution is required for the region.

An autochthonous roof ramp-on-flat duplex (Figs. 8 and 22;
Perry, 1978; Herman, 1984) is again a viable alternative. A ques-
tion that arises in examining these two examples is whether a
flat-on-flat solution is possible in any blind thrust terrane in which
the cover strata are essentially unfaulted. In such cases, the only
plausible mechanisms for emplacing a horse with a low thickness-
to-length ratio (<<1.0) are: (1) delamination, (2) a system of
emergent thrusts, or (3) layer parallel shortening in the roof layer
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to accommodate the movement of the stiff layer. Although de-
lamination has been well documented elsewhere (cf. Price, 1986),
the wedging body always has a relatively large thickness-to-
length ratio (>1.0). If the deformation occurred by area-constant
plane strain, delamination requires that the original length of the
- stiff layer be greater than the original length of the roof layers.
This condition can exist only if there was syntectonic sedimenta-
tion or if the thrusts were buried by later sedimentation.

From the standpoint of mechanics, the insertion of a horse
beneath roof-layer strata by delamination essentially doubles the
amount of fault surface. Both the energy expended in fault propa-
gation and that expended in fault sliding are directly proportional
to total fault length in a duplex (Mitra and Boyer, 1986). The
energy expended in fault sliding is also directly proportional to
the total fault displacement. Increasing the total length of faults
and the total fault displacement in a duplex by an order of magni-
tude increases the energy required to form the duplex by several
orders of magnitude. Work requirements predict that the em-

placement of horses with a small thickness-to-length ratio by
delamination is unlikely.

The macroscopic kinematics of a flat-on-flat solution for
blind structural culminations is, at best, unlikely, and can be
shown to be physically impossible in many cases. The most prob-
able alternative solution is an autochthonous roof duplex (Fig. 8)
in which the displacement on the individual horses of the stiff
layer is absorbed by combinations of layer parallel shortening and
folding of the roof layer strata (sec Fig. 8 and Geiser, 1988b).
Boyer and Elliott suggested that the “corrugated iron” pattern of
the central Appalachian Valley and Ridge Province could be
applied to the rest of the Appalachians. Herman (1984) and
Bowen (1986) have found evidence supporting this interpreta-
tion, and the mechanical model proposed by Geiser (1988b), in
the Juniata culmination. A similar interpretation may apply to
structures in other parts of the Appalachian Valley and Ridge
Province (personal reconnaissance; Dunn, personal communica-
tion, 1986).
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" CONCLUSIONS

Although kinematics is an important tool for examining
deformation, it has not previously been considered in construct-
ing geological cross sections. In this chapter, I have shown that
kinematic analysis is as significant a consideration in section con-
struction as it is in orogenic processes, Kinematic concepts can be
applied to the construction of geological cross sections in de-
formed terranes in the following ways:

(1) In analyzing map-scale structures, it is imperative to
recognize that the pattern of faulting and cutoffs in the restored
section dictates the kinematic history of the deformed state sec-
tion. The elementary concept of forward modeling, and its finite
strain consequences, allows one to eliminate entire classes of
possible structural solutions from consideration. Kinematic ad-
missibility is a powerful addition to constraints on cross-section
construction.

(2) Macroscopic strain states, whether global pure shear or
global simple shear, can be investigated through the use of loose
lines. The nature of the boundary conditions is an additional
attribute of the concept of admissibility. As such, information
given by loose lines can be used to suggest changes in the geome-
try of the deformed state section.

(3) Analysis of the excess section method of area balancing
using macroscopic kinematics demonstrates that ignoring the im-
plications of the boundary conditions can lead to serious errors in
palinspastic restoration of geological cross sections. The problem
is particularly acute in blind thrust terranes, where passively de-
formed roof-layer strata must be distinguished from stiff-layer
strata deformed by imbricate thrusts, or where the stiff layer must
be distinguished from the layer containing the tips of the
imbricates.

(4) The link between the microscopic kinematics of grain-
scale deformation and the macroscopic kinematics of horses and
thrust sheets can be made in two ways: (a) Macroscopic loose
linmeanbeusedtopredictstrajnsandstraingradientsinthe
deforming thrust sheets. The predicted strains can then be com-
pared to field data on deformation fabrics. Disparities between
the two data sets require the geometry of the deformed state
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