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Abstract. The purpose of this paper is to clarify the dynamic role of
1i:ﬁ$§5§€f§é density heterogeneities, in particular with respect to moun-
tain building and other processes of intraplate deformation. Density “anom
aliet within or just beneath ‘the lithosphere tonstitute major sources for
tectonic stress fields : the product of their magnitude by their depth is
shown to characterize their ability to induce deformation. This ruleof
the density moment directly yields the lithospheric thickening or thin--
ning rate when applied to structures of large lateral extent. For anom-
alies of lateral extent that is small in comparison with their depth,
the deformation is vertically -inhomogeneous and his been computed with
the help of simple physical models of a stratified viscous Newtonian
lithosphere. The analytical treatment is based on Fourier transform. .
Continent-continent collision thickens not only the crust but the eptire
lithosphere. The cold root underlying a mountain chain induces strong re-
gional compressive stresses able to sustain the mountain bulding process
vithout further help from forces transmitted from far away. Thus the com
tinental lithosphere is in.a somewhat metastable mechanical state. Adia-
‘batic, i.e. rapid, thickening (or thinning) tends to grow further once
initiated. Tectonic phases of strong compression correspond to the climax
of such instabilities. The response of models with cold lithospheric roots
of various intemsities has been computed both in two and three dimensions.
They-yield velocity distributions and stress fields. Instructive compari-
sons are made with earthquake focal mechanisms and in situ stress measure-
ments in the Alpine and Appalachian regions. In the presence of lateral
variations of the mechanical properties of the lithosphere, the tectonic
style is not only function of the local topography and of the nature .of
its compensation. Defbrmationd in neighbouring provinces are coupled as
shown by 3-dimensional models. For s.example, thickening sustained by a
cold lithospheri¢’ root m@y generate extension in peripheral zones of weak-
ness. These last results illustrate the point that the computation of re-
gional tectonic stresses requires the knowledge of-the density anomalies
within the—lithospherg on the one hand, and of geometrical constraints

related to lateral mechanical heterogeneities on the other.

5 -

1. INTRODUCTION ° . . - e

Stresses within the lithosphere are sensitive to the global dynamics
of the plates. Thus attempts have been made to model these stresses by
applying appropriate forces at the plate boundaries [Richardson et al.,
1979]. Such models based on homogeneous plates cannot account forabrupt
- changes in the stress patterns observed in certaiﬁ°regions.‘For-ihstance,
the compressional direction in the Alpine region determined by earthquake
focal mechanisms remains perpendicular to the mountain chair at the bend
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‘Some of these considerations are put in appendices so that only the most

_portance of geometrical factors related to lateral variations of density

: pleitout andgFroidevaux

... - %

between the central and the western Alps [Pavoni, 1977 ; Fréchet, 1978 ;.. the- case Sgy be, lith
Philip, 1980]. In the Appalachians and in the Colorado plateau, in situ ":; cdiis. Here we shall ¢
measurements display stress azimuths orthogonal to those of- surrounding " .ers of uniform Newton
regions [Zoback and Zoback, 1980]. Another case is the Aegean basin where sy - and possibly dverl
extension changes to compression along the western and southern edges of er reat advantage of a
the region [Le Pichon and Angelier, 1979.; Mer?ier, 1981 i-McKenzie, th:;gning the main physi
1978 ; Paquin et al., 1982]. One way out is to invoke possible lateral A%t:oblem to be two-dimens
mechanical heterogeneities within the plate. Indeed the presénce of. zomes :iP ated between two layer
of weakness or, on the contrary, of hard cores can generate local vari- ‘:ven layer. Their varia
ations in the tectonic style [Tapponnier and Molnar, 1976 sZTapponnier, - ='into<60mponents~6f vario
1977]. . L -E ) _simple to study the effe
The other alternative, which will be emphasized in this: paper, 1s -to L e luctuation Lo
take account of local sources for the lithospheric stress field. These _" ;
sources are caused by lateral variations in the density distribution of
thermal or lithological origin. For ipstance, it has been demonstrated : 2
that topography and its compensation at depth can generate  sizable stres- J¥ ° yhere k the wavenumber ec
ses capable of influencing the tectonic style [Frank, 197% 3 Artyushkov, 3
1973]. A good illustration is that thé mass defect in the mantle under ) _
ridges and rifts is responsible for both the regional eleviated topogra- : resulting surface stresse
phy and the extensional regime of those structures. This last example " particular, the induced t
should not yield the impression that a straightforward correlation be- 3B - pe discussed in some dete
tween topography and stress-style always holds. On the coqﬁrary other E _problem derives from the
elevated regions can suffer stronger compression than their surroundings: i@ ¢ ging velocity changes to
this is the case for most collisional mountain chains. Similarly, but on ‘iyation or continuity equa
a larger .scale, continents, which are more elevated than oceanic ridges, ! .‘course, functions of the
are often in compression. - ’ > -
The main purpose of this paper is to clarify the relationship between
lateral density variations in the lithosphere and observed ‘topography
and stress field. The first section is a genmeral study of the physical
mechanisms. It defines the properties of the model lithosphere and the
applied boundary conditions. A simple two layer model is solved analyti-
cally and provides adequate physical insight as to the influence of the
depth and wavelength of the mass variatioms upon the induced topography
and surface stresses:. A more elaborate set of models includes more rea-
listic distributions of mass heterogeneities and mechanical properties.

il

o

i a0 = Bp cos(kx)

The lateral mass varic

important conclusions appear in:the main text. This presentation was cho-
sen for the sake of readers who would be most interested in the geophysical
applications. The latter are found in the next parts of the paper. Sec-
tion 3 considers cases treated in two dimensions with strong éemphasis
given to the role of lithospheric thickening in the molitain building’
process. It is usually assumed that forces responsible for the deform—
ation in a collision region are transmitted through the .adjacent lithos-
pheric plates. We shall show that the mechanical instability, which exists; ¥
once a lithbspheric cold reot has been created, is capablé by itself of 2 -
sustaining the compressional tectonics. The existence of a cold lithos-
pheric root is well demonstrated by the seismic data in the Central Alps
[Sprecher, 1976 ; Panza and Mueller, 1979 ; Baer, 1980 ; Hovland et al.,
1981 ; Werner and Kissling, 1981]. Section 4 attempts to explore possible
limitations of the two-dimensional treatments by extending this study to
three dimensions. It should provide a good basis for the modelling of
regional intraplate deformation and stress fields. It analyzes the im-

_Pig. 1. Lithospheric mode:
“ding sinusoidal mass hete:
They have the same nondime
layer 3, which belongs to
~t2lled dm in the text and
L the interface between 1t
ko the lithosphere. It has
#nd contains density heter
dng thickness. Layer 5 is
. The Earth's lithosphere exhibits a rich variety of mechanical behav- . inity and has a viscosi
iors. On the global scale of plate tectonics it may be pictured as rigid. J& #¥e those of our standard
However intraplate deformation phenomena are known to occur at all scales. & in the text.

and mechanical heterogeneities. ‘A possible novelty is the éontingent
presence of zones of extension in the foreland of mountain massifs.

2. THE BASIC PHYSICAL MODEL
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case may be, lithospheric deformations can be brittle, elastic, or
s the Here we shall considet a model lithosphere composed of several
r‘séf uniform Newtonian viscosity, underlain by a_vis?oys Qﬁthenos—
. d possibly-overlain by-an elastic lid. This simplification has
phere a:t advantage of allowing to treat the problem analytically while
oe gr?n the main physical implications. First we will also assume the
i:;-id be two-dimensional. Mass heterogeneities are either concen-
ed between two layers or spread uniformly over the whole §epth of a
erat layer. Their variation in one horizontal direction, x, can be split
"ncomponents of various wavelengths ( Fourier transform). It i§ then .
1e to study the effect of a simple harmonic, i.e. of a sing501da1
- fluctuation : . .
o 00 cos (kx) €Y
wbere k the wavenumber equals 27 /A, X being the wavelength.

fhe lateral mass variation induces a f¥ow in the whole structure. The

resulting surface stresses and deformations can thus be predic;ed. In

jcular, the induced topography and superficial tectonic regime will
pe discussed in some detail. More precisely the quantification of this

lem derives from the solution of the Navier-Stokes equations, rela-
ting velocity changes to driving forces, combined with the mass conser-
wation or continuity equation (see appendix 1). These solutions are, of
g¢ourse, functions of the applied boundary conditions : at the surface

2 )

¥ig. 1. Lithospheric model consisting of five viscous layers and inclu-

#ing sinusoidal mass heterogeneities. Layers ! and 2 represent the crust..

They have the same nondimensional width (0.2) and viscosity (lOnO) as

leyer 3, which belongs to the mantle lithosphere. The mass heterogeneity

@lled 3m in the text and marked by black beads in the figure is Iocated

88 the interface between the crust and the mantle. Layer 4 also belongs

to the lithosphere. It has a viscosity Ny, @ nondimensional thickness 1.5

™4 contains density heterogeneities depicted by vertical lines of vary-

% thickness. Layer 5 is equally made of mantle material. It extends to
inity and has a viscosity (no/100). The viscosities mentioned here

&e those of our standard model. Other sets of values are also conside-
?ed in the text.
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two quantities must vanish. One is the vertical velocity. The other de- :j by matrix inversion

pends upon the absence or existence of the elastic 1id. In the first case} Figure 2 depicts the variat
the shear stress is zero -at the surface (free slip). The computed sol- Btresses and of the horizontal
utions yield the vertical normal stress, from which one evaluates the ¥ave number. Four curves are g
topography, as well as thehorizontal velocity gradient, which one may com= spond to the standard set of v
pare to the tectonic deformation. In the second case the computed verti torrespond to the same structu
cal stress plays a similar role, but the surface velocity in the fluid a factor of 100. Density va
vanishes. The relevant quantity is the surface shear stress in the vis- B lower lithosphere (index 2) ar
cous fluid which is operative in inducing horizontal compression or ex- & solutions will be analyzed sho:
tension in the lid. The reader is refered to the appendices for a full of the vertical stress for ého;

- 1 ] | "

Fig. 2. Stresses and horizontal velocity gradients at zero depth versus 3
wavenumber k' characterizing the spatial variation of the mass anomalies
Indices 1, resp. 2 refer to mass heterogeneities at the-Moho, resp. den
sity heterogeneities in the lower lithosphere. Full lines give solutions
for the standard viscosity distribution. Dashed lines are for a similar °
set of viscosity values except that of layer 2, which has been reduced
to 0.lng. The shaded area indicates the difference between the solution
for these two viscosity distributions. The various quantities are nondi
mensional. They correspond to a mass fluctuation of amplitude 1.5 at th
Moho or to a density variation of amplitude 1 in the lower lithosphere.
The relationship between nondimensional quantities is given by (Al7).
Thus for a characteristic length £, = 100 km, ‘k' = 1 corresponds to

k = 1075 m~! and therefore to a wavelength A = 2r/k amounting to 628 km.
For the stresses, the dimensional value is readily found, if one notices:-
that for k = 0 the local compensation implies a vertical stress -equal t
the weight of the underlying mass anomalies. - }
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rig. 2. (continued) _ :

sathematical treatment, and the definition of non-dimensional variables.
A certain number of simple structures can readily be handled analyti-
cally (appendix 2). The corresponding solutions bear interesting charac-
teristics, also found in more elaborate models presented below. At large
wavelengths the computed surface vertical stress equals the weight of -
the mass variation at depth. This implies a perfect compensation of the

"gustained topography. This does not hold at wavelengths short in compa-—

‘rison with the depth of the density anomaly : the induced topography is
then attenuated. In the presence of a lid the simple analytical models
also show that, at- large wavelengths. the intensity of the horizontal
stresses within the 1id is proportional to the depth of the density va-

-riation. :

In order to simulate a situation somewhat comparable to the real Earth,
et us consider a structure consisting of five layers as in Figure 1.
The first two correspond to the crust, the next two to the mantle lithos-
phere, and the lower one to an astenosphere extending to infinity. The
thicknesses are given in'a non-dimensional form and can be multiplied
by 75 or 100 km to correspond to standard dimensions (appendix 1). As a
starting point we take a basic set of viscosities equal to 10n, for
layers 1, 2, and 3, no for layer 4 and 0.0lno for layer 5. This model is
hereafter reférred to as the standard lithospheric model .Departures from
the above viscosity contrasts will help testing the sensitivity of the

~ sodels. In particular, the case of a lower crust with a reduced viscosity

¥ill be found instructive. Figure 1 also shows two kinds of density he-
terogeneities. One is concentrated at the interface between two layers
#nd simulates the effect of Moho undulations. The other is uniformly_dis-i
tributed in layer 4 and reflects compositional or thermal mass variations
vithin the lower lithosphere. For this five layer model the computation
proceeds as in appendix 2. There are four integration constants per Iayer,
which makes a total of 20 in this model. They are obtained numerically
by matrix inversion.

Figure 2 depicts the variation of the surface value of the two normal
Stresses- and of the horizontal velocity gradient as a function of the
wave number. Four curves are given for each quantity : full curves corre-
spond to the standard set of viscosities of Figure 1, dashed curves
€orrespond to the same structure but with a lower crust. viscosity redueed
by & factor of 100. Density variations at the Moho (index 1) and in the
lower lithosphere (index 2) are considered. Various aspects of these
®olutions will be analyzed shortly. One is the already mentiomed fall
of the vertical stress for short wavelengths (large k). The variation

25
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Fig. 3. .Vertical stress Tzz (full line) and horizontal stress Txx(dashed line) #§
versus depth for a small wavenumber k' = 0.05. The four solutions corres-ﬂ
pond to two types of mass heterogeneities and to two different values of §
the viscosity in the lower crust. At the top, the model lithosphere )

constains a mass fluctuation 3m = 1.5 located at the Moho. At the bottom, J

the density heterogeneity 3p = 1 is located in the lower lithosphere.

The lefthand solutions correspond to our standar viscosity model, whereas 38

o edtiags

i

the right hand ones include a soft lower crust. i

with depth of both normal stresses T,, and T4y is given in Figure 3 for
very long wavelength (k' = 0.05). All four models corresponding to Figur
2 are also shown. Figure 4 depicts the same quantities for the same mo-
dels but for .rather. short wavelength (k' = 3). For a crustal thickness of
40 km these two extreme values of k' correspond to lateral variations with
wavelengths of 12000, resp. 200 km.

a. Mechanical Behavior for Large Wavelengths:

_ The Rule of the Density Moment

The computed values at large wavelenmgth (k' << 1) can be understood o
the basis of simple physical arguments. Let % be the depth limit for
density heterogeneities and let the viscosity beyond this depth be suf-

ko

a

.

ficiently small for the non hydrostatic vertical stress to be negligible. 4
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2
“ee fzoApgdz
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44 ko ‘ B
T
'3’: ax p&— o]
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the model lithosphere

at the Moho. At the bottom,
1 the lower lithosphere. 3
lar viscosity model, whereas 3

’ !i;i 4. Similar to Figure 3 but for a large wavenumber k' = 3.

Thus 1z at any depth z, is equal to the weight of the density anomalies
delow this depth :

: @
- d
LI IzoApg z _ —
* where g stands for the gravity acceleration. This derives from the ver—
tical equilibrium equation :

. is given in Figure 3 for
els corresponding to Figure
antities for the same mo-
For a crustal thickness of 3
d to~lateral variations with 3

-3t ’

14 .

fzz Xz - B} N
—t e + A = A :

v 3% P g P8

#8 31y;/9x = kTyx, becomes negligible at small k. Equation (2) is well ’ .
illustrated by the solutions shown in Figure 3. There 1,, jumps to a
tinite value at the depth of the Moho where the mass variation is con-
tentrated (top part of the figure) or increases linearly within the lower
lithosphere containing the homogeneous density anomaly (bottom part of the
ficure).

The tendency of the lithosphere to vary in thickness is related to the
8ifference between the normal stresses averaged over the entire 1litho-—
®pheric thickness. Let us first compute T,,. We have just seen that for a
single density fluctuation Am = Apdz located discretely at a depth z, the
#tTess t1,, vanishes below z and equals Amg from z to the surface. The

<< 1) can be understood on.
>e the depth limit for

>eyond this depth be suf-
1l stress to be negligible
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average stress is thus Amgz/f Hence for a distributed density fluctuatj
Ap, one has :

T =8 (Ypzaz-81 - - ¢ )
T2z =2 fo' boz dz T ) (3)_‘-

L

" where M, giveﬁ?b§ the above integral, is the moment of the density ano~"

malies with respect to the surface. This physical-quantity will play a
key role in understanding intraplate dynamics. o -
Integrating the horizontal equilibrium equation arxxlax + arxz7az =0
over the lithospheric thickness ope finds :

Tt o o
9x [ | 4

where 1__ (%) is the drag at the base of the lithosphere. The density
f1uctua¥%ons_db not contribute to the value of the average horizontal :
compression Tyy. Focussing the attention to the .effect of these fluctu-
ations one sees that the quantity (T,z - Txx) varies in-proportion to tig
moment M, All iof the above is trué independently of the particular rheo~%
logy of the structure. The latter could just as well be elastic or rigid ]
plastic and laterally heterogeneous, the tendency for lithospheric thicks
ening or thinning would always be governed by the magnitude of M, the 3
moment of the mass heterogeneities. This simple rule is similar to that 3
derived for layers of variable thickness [Artyushkov, 1973 ; Dalmayrac 3
and Molnar, 1981{]. Z .

In the particular case of a viscous lithosphere one has the loca
equation : s . ) :

Txx = Tzz = 4N — 5 65):
9x : 7

For large wavelengths the horizontal velocity gradient does not vary wiﬂf
degth (see equation (Al12) in appendix 1 which shows a variation in e of
e XY). The contribution induced by the mass heterogeneities is therefores

Su T T Tzz;= M ; (6)’_;
9x 47 - 4m - ] -

This simple formula explains two features in Figure 2. The deeper .the
density anomaly the larger the moment M. Hence the larger 3u/3x values
for case 2 than for case 1 near k = 0. In other words a given mass fluc
tuation induces larger tectonic deformations when located in the lower
lithosphere rather than at the Moho. The second feature is the enhance-
ment of Ju/dx by the introduction of a soft lower crust which decreases 3
the mean viscosity. -7 B '
The depth variation of the horizontal stress Tyxx Can now be derived .
from (5) by introducing (2) and (6). The value of the deviatoric stress

becomes :

This expression explains the strong variations of 1xx in Figure 3 (dashe{
curves) between layers of different viscosity n. Strong deviatoric stres
are concentrated in the most competent layers. The figure also illustrate
the fact that Tyy = 0. . 3

This last remark can help illustrating the case of a highly viscous :
lid of thickness d and much smaller viscosity with a mass fluctuation AB
concentrated at the base of the lithosphere. According to (3) the stress J
Tzz amounts to ghm at all depths. According to (7) Txx = T,, in the weak ]

-, =-A1Y 7 i n}
- : ,

;;eitout and Froidevaux { Tecto
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r layer. To have a global zero average, the horizontal stress in the
:::‘competent layer must satisfy the relation :

. - Amgd S
- _-fé— -

:is‘is identical to the result obtained with an élastic lid at the end B -
::f.ppendix 2 and showing once more that the deeper the source, the stron- )
¢ the induced surface horizontal stresses. All this of course within

:
::é limit kd << 1. -

.:aVariafion of the Solutions for Decreasing Wavelengths
— ~ - :
The physical arguments presented above are not valid at shorF wave-
iiksths (kd > 1). For instance _the density anomaly can be partially sup-

srted by horizontal variations of the shear stress : 3Ty, /3% = KTy,
cannot be neglected. Thus equation (2) for.Tzz does not apply : the topo-
graphy does no longer correspond to the weight of the undgrlaxlng'denslty
snomalies. The decrease of T,, takes place for kd > 1. This explains that
th# decrease starts at: smaller k values for deeper sources (figure 2).
gimilarly du/3x is no longer depth independent and (6) does not apply.'
the vertical profiles of 1,, and Tyx shown in Figure 4 have lost the sim-
plicity of those described in Figure 3. Unlike what was said for large
wavelengths the tectonic effects of shallow sources may here dominate
ghb;e of deeper sources. To see that, observe the crossing of the 3u/d9x
curves in Figure 2,

‘Other models similat to the one pictured in Figure 1 have also been
computed in order to assess the influence of a stiffer upper lithosphere
or of a stiffer asthenosphere. The solutions can be found in appendix 3.
They do not significanEly differ from those discussed above,

e

3. LITHOSPHERIC THICKENING (OR THINNING)
Alpine type mountain chains are usually in compression. Apparently
this fact could be in contradiction with the major proposal formulated
inithe previous section. Indeed the predicted tendency of a high topo-
‘rdphy to spread is proportional to the moment M (equation (6) and (7)).
The_latter can often be expressed by the product of the mass of the to-

" pography by the depth of compensation (see equation (3)). One way to

remove this difficulty is to invoke strong compressional stresses through-
out the colliding plates capable of sustaining the mountain. The deform-
ation is then thought to be localised in zones of lithospheric weakness
[Artyushkov, 1974 ; Molnar and Tapponnier, 1981).Such arguments are cer-
tainly relevant for mountain building processes. Here, however,we propose

a mechanism equally capable of generating large compressive stresses and

of localizing the crustal deformation. -This new approach takes account -
of the fact that in continental collision the thickening involves not

only the crust but the entire lithosphere. A cold root forms at depth- .
below the mountain chain. This has been well documented for the Central
Alps on the basis of s€ismic and gravity data [Panza and Mueller, 1979 ;
¥erner and Kissling, 1981]. The exact geometry of this cold root is not
known. Like thrusting in the surficial geological -layers it may well be
Asymmetrical and heterogeneous. Such details are not essential but for

the fact that the thickening factors are identical for the lithosphere

and for the crust. The cold root being denser than the surrounding mantle,
it has a tendency to sink. This generates 1local compressive stresses in
the upper lithosphere. This mechanism has already been suggested for ex-
plaining the tectonics of northwestern Greece and Albariia [McKenzie,

1978]. Here we shall quantify this problem in two different ways. First,
the time evolution will be investigated on the basis of some simplifying
4ssumptions. Second, a more precise configuration will be treated numeri-
¢ally and the results will be presented in graphical form.
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Fig. 5. Density variations, versus depth, follpwing homogeneous. litho-j gI;::athickeningg° e <

- spheric thickening by a factor e. The crustal thickness increases from L depending upon the sign o
h; to hy..This gives rise to.a negative density fluctuation of amplitudd sign of the density momens
Pec — Pp (where the indices c and m refer to crust and mantle). The locad dring the lithosphere bacl
tion of this density anomaly is defined by the shaded area on the left J ted. by small arrows. Inve:
hand side on the left Hand side of the picture. The right hand ’

H 3
side pictures the density anomalies (shaded area) related to tempe-

=

) rature differences. T; is the original profile and T, is the new prof'l For the simple homogen

- - after adiabatié¢ thickening. The resulting density anomalies equal T - process considered here ti
pm @(T, -.T7), where a is the coefficient of thermal expansion. Notice 3} cal velocity gradient dw/!

that the scale for Ap is not the same on both sides of the picture (thed for the case where 7 = {

¢ X
thermally induced heterogeneity is enhanced by about a factor 4). :,' & %

- ) : - - : B B vA(e? - D=vyA(e +-1;

a. Metastable Continental Lithosphere vimte vy = g/l.ﬁg. For an i1
predicts the following tin

,.ezyAt € ~ 1
T + 1

o

Let us consider a simplified lithospheric thickening process where 3
each mass element originally at a depth z is brought adiabatically to .
the depth €z. The corresponding Moho deflection introduces a mass defi-3
ciency that will tend to oppose further lithospheric thickening. The co}
root on the other hand represents a mass excess of smaller magnitude bli_ 1 - ezyAt_(eo - 1) )

P

located at greater depth. Whether its destabilizing influence will over €o + 1
e come the:$tabilizing effect:of the crustal root-depends upon the sign of
- the total moment of the two:density anomalies. ) p

Whem A is negative, i.e.,
thickening (or thinning),

. ) N n - . - ’ t+ * 1, with a2 time constan
M= =(p - pc_‘[ c z dz +j ap [Tl (-E-) - T (z)] z dz M ®atles that in this situat
.- _ o: = N - . . -

Be - 8-

-: . he2 ® - 2 - = 2D & -
= (o, = P % (2 - 1) +-j @ o (T, = Ti(z))zdz(e ) = A(e l)-. | & far-field horizontal str
o 7 S8 % smstain a lithospheric
The first term represents the contribution of the crustal root. Herd siey Ygy Va8 cis plotted in
" pp and pe are the mantle and crustal densities and h, the initial crus4ie a8 where A is positive,
tal thickness. The second term derives from the downward advection of A ®he thermal root. Any pert
cold material. There, o is the coefficient of thermal expansion, and k- 3 ek of this adisbatic mod

T,(z), the initial temperature profile (Figure 5). 1 said to be unstable to
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Fig. 6. Lithospheric avéerage vertical stress induced by a homogeneous
and adiabatic change in thickness by a factor e as given by (11) (e > 1
jmplies thickening ; € <-d implies thinning).. Two cases are considered
depending upon the sign of A, a parameter defined by (8) and giving the
sign of the density moment. For A < 0 the induced stress will tend to
bring the lithosphere back to its original thickness (e = 1), as indica-
ted by small arrows. Inversely the lithosphere is unstable for A > O.

For the simple homogeneous thickening (¢ > 1) - or thinmning (e < 1) -
process considered here the thickening rate 3e/9t is equal to the verti-
cal velocity gradient 3w/3z = 3u/dx. Thus, plugging (8) into (6) one has
for the case where 1, =0 : :
oA’ - De=yae + D (- 1) o

(9)

wheré y = g/4n%. For an initial value €o of the deformation this equation
predicts the following time evolution of the thickening :

1+ ez‘YAt €6 ~ 1
€ + 1

£ =

(10)

- e2YAt [So 7 1) - S .
o €o + 1
When A is negative,’i.e.i:when the dominant -effect comes from crustal
thicKening (or thinning), the lithosphere gses back to its normal state,
€ = I, with a time constant (- 1/2v A). The -system is said to be stable.
_Notice that in this situation one has from (3) and (8).
T =8A
2z

(e2 - 1) amn
A far-field horizontal stress Tyx Of the same magnitude must be provided
t? sustain a lithospheric thickening (thinning) of magnitude e. The quan-
tity 1,, vs eis plotted in Figure 6. This last figure also depicts the
Case where A is positive, i.e. where the prevailing influence is due to
the thermal root. Any perturbation will tend to grow. Within the frame-
work of this adiabatic model involving a viscous lithosphere the system
is said to be unstable to infinitesimal perturbations. It leads to infi-
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Fig. 7. Schematic picture of the possible time evolution of the litho-
spheric thickening process. At the top the dense cold- lithospheric root :
generates strong compression in the mountain range. The graben drawn in ;
the periphery may result from the presence of lateral variations of the'
mechanical properties discussed in section C. At the bottom the instabi-
lity has gone further : a cold blob has detached so that rapid uplift

sional tectonics caused by the now_ predominent mechanical action of the -
crustal root. Compression may follow in the periphery.

nite thickening, resp. thinning (ridge), after a finite laps of time equal -
to 1/(2yA) log [(eo = 1)/(eo + 1)1, resp. 1/(2yA) log [(1 - €0}/(1 + eo)]

What about the sign of A for the continental 11thosphere ? Assumlng
standard values pm - pc = 0. Sg/cm , pm = 3.3 g/em3, = 30 km, o =3105
K 1, and a temperature increasing uniformly to 1400° C w1th a gradient of
10°C/km one finds that the destabilising influence of the thermal root is
about twice as strong as the stabilising effect of the crustal depth va-
riation (equation (8)). Assuming an average lithospheric viscosity-n = - 3
1023 poises, one finds a time constant 1/2 yA amounting to 30 Ma. A thick-ﬁ.
er crust or a thinmer thermal lithosphere would yield A values closer to
zero or possibly negative. Here one should notice that A < O implies thag z
in the region considered, the mechanical state is more extensional than
for a ridge (Figure 6). The available data [Richardson et al., 1979] in-
dicate-6n the contrary that continents are in relative compression when
compared with oceanic ridges. The global pattern is discussed elsewhere
{L. Fleitout and C. Froidevaux, manuscript in preparation, 1982]. It
strengthens - the argument that the parameter A is positive almost every-—
where in continents.

An adiabatic model, which here predicts that the continental lithos-
phere is unstable, does not encompass the entire physical picture. On the
Earth many continental areas stay stable for hundreds of million years.

A variation of the lithospheric thickness certainly induces a temperature °
anomaly, but the latter can be thermally reequilibrated within a few tens
of Ma. Thus after a slow process only the stabilizing crustal density
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Fig. 8. Plot of the velocity u and of the stress 7,, and T4y at -zero
depth versus distance x from the center of an elongated mountain chain

: a finite laps of time quﬂE The tectdnic style depends upon the sign of (1., ~-1,,) or of 3u/3x. Th :
.yA)-log [(1 - eo)/(1 + €0l 3 small arrows in the top diagram define the reg%gns o%géxtensionzl o -
1} lzthgiphegg imAs:umlgﬁo_si‘ ?omp;essional tectonics. The bottom diagram gives the computed flogrfield
i/em3, = , o = E in the vertical plane (x, z). It i i i
y 1400°C with a gradient of g’ model of Figure 1. Here Ehe)mass ;iingzz;Z;iyt:i zzzsﬁzhilgzozgthls
ience of the thermal root is j I?teral extent as suggested by the black beads. Its aﬁplitude is 1n1te—
't of the.cru§ta1 ?epth va- tional to exp. (< x/0.652,)2. There is no density heterogeneit igrzﬁor
Lthqsph?rlc viscosity n = : lover lithosphere (Ap = 0).If the amplitude of the mass defectytime ih

amounting to 30 Ma. A thlckj gravity constants equal 1 kbar, the unit for the stress scale i 1s, e - .
ld yield A values closer to B | kbar. In that case the unit for u amounts to 0.1 mm/yr if thesvja 5 .
:ice that A < O implies that, § no of layer 4 équals to 1023p and Ef the reference lengih L equalzsfggtszi
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. . Rl . . . »
srn is discussed elsewhere i slowly and cannot develop. Instabilities will_only mature when an exter-— . -

preparation, 1982]. It ; nal factor triggers a finite amplitude perturbation. The triggering agent
is positive almost every- can be a push or pull transmitted from a far-field source. It can glsi be
3 of  thermal origin : an example is the action of the upwelling convective
at the continental lithos- < Surrents softening the lithosphere prior to continental break-up [Nataf
ire physical picture. On the et al., 1981]. ) g *
hundreds of million years. i . “Another simplification introduced in the above model is the assumpti
tainly induces a temperature § of boyogeneous thickening or thinning. It does not seriously restri E tﬁn
wilibrated within a few tens;_ validity of the presented arguments about stability, but icycertainiy ©

bilizing crustal density E% fails to describe the true temporal evolution of the process. Unlike the
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Fig. Y. Similar to Figure 8 butwith an additional density heterogeneity
located in the lower lithosphere.- Its- iateral variation is identical to.
that of Am and its total mass amounts to —0.45 Am. Notice that the flow
line density has been reduced by a factor of 2. .

thinning process which can lead to contimental break-up, thickening does :
not go on indefinitely. Both convection experiments [Nataf et al., 1981} 3
and numerical simulations [Houseman et al., 1981] suggest that cold blobs
can detach from the upper boundary layer and sink although this process
may be hindered somewhat by the strong temperature dependence of the ;
viscosity [Yuen et al., 1981]. A cold lithospheric root could thus break .
off as shown in Figure 7. Such an event could dramatically hamper the. .
collision process. Tectonic quiescence can in this way follow an orogenic
compressive climax. - : :

A full understanding of this whole process requires a thermomechanical
treatment. Here we emphasize the idea of a metastable continental lithos~
phere apt to amplify any large enough heterogeneity. This concept certain-
ly plays a key role in tectonics. . - :

b. Stresses and Velocities for Alpine Type Mountain Chains

The existence of a cold lithospheric root under the Central Alps has
raised the question of its role in the mountain building process. Having
argued that such a deep thermal structure can-maintain the mountain chain
in compression, we want to illustrate this point by displaying some simpl
model solutions. To reflect the evolution of the thermal root during the
1ife of the mountain chain, mass anomalies of various magnitude will be
considered. Furthermore the finite width of the structure and possible
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Fig. 10. Similar to Figure 9 but with a density heterogeneity in the
lower lithosphere amounting to™-0.9 Am. "- B -

- wariations in the viscosity profile will be taken into account. The star-

ting layered structure is that shown in Figure 1. Now, however, the den-

sity variations are of finite lateral extent. At the Moho one has i
8, = 9m; exp(-x2/d?), and in the fourth layer Apy = 9py exp(-x2/d2). The
solutions are readily computed by superposing harmonic solutions presented
in section A. The results of such Fourier integrations are shown graphi-

cally. Each figure present the viscosity structure and mass distributions
under consideration. The induced flow field overprints this structure and

- surface values of the vertical stress Tz, the horizontal stress txx and

the horizontal velocity are plotted. Here one should remember that the
topography is proportional to (-Tzz), and that the sign of. Txyx ~ Tz; = 4n
(3u/3x) is indicative of the tectonic:style (compression dor extension).-
The asymptotic velocity u is proportional to the moment MZof the mass
anomalies. R

Figures 8, 9 and 10 represent the results for a standard 11thosphere
with three d1fferent deep density anomalies. When the latter is absent
(Pigure 8) the crustal root prov1des approximate local support for the
topography and the whole structure is seen to spread out. The mountain is

" in extension. In Figure 9 the cold root has a mass excess amounting to 45%

of the crustal mass deficiency. This case could, for example, correspond
to a 3000 m high mountain with a temperature anomaly of 360° C between
60.and 210 km. The moment-of the ¢old root is dominant. It controls the
large scale convergent flow field. At the surface, the more localized
®echanical action of the crustal root is, however, still capable of gene-
lltlng extension in the central zone. The demser cold root im Figure 10
Teinforces the tendency and compression prevails everywhere at the surface.
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Fig. 11. Sﬁmilar to Figure 9 but with mass and density heterogeneities
-extending three times further laterally.

Notice that a density anomaly of finite lateral extent is always fully
compensated by the regional topography. The deeper the anomaly the broa-
der the corresponding surface deflection. Hence the presence of a depressi
next to the mountain in the last two figures. This feature tesults from
viscous flexure. ’

By comparing Figure 1! to Figure 9 one sees that an increasing width
of the density anomaly enhances the dominating influence of the cold root.
On the other hand the comparison of Figure 12 to Figure 10 illustrates an
opposite effect : the presence of a weak lower crustal layer tends to
reestablish extension in the central zone. Such a decoupling layer may

- well exist in certain geological situations. Looking at the flow fields,
one notices that thickening is not homogeneous : the down-going flow is
not just fed by lithospheric material but also from upwelling in the as-
thenosphere. This tendency is enhanced when the viscosity contrast “between
upper and lower lithosphere is increased. In the limiting case of an elas
tic upper lithosphere the flow is totally -confined to the deeper portion
of the structure.

One should specify that all above cases are meant to be idealized il
lustrations of the effect of a cold root. In realistic situations, late-
ral mechanical heterogeneities or non-Newtonian rheology can certainly
jead to different configurations. The width of the zone in compression
could in particular be modified. A particular model is required for each
geological.case. This is outside the scope of the present paper. ’

4. THREE DIMENSIONAL DENSITY ANOMALIES AND INTRAPLATE STRESS FIELD

The two dimensional models discussed so far only apply to geological
structures with elongated geometries. Two new aspects will now be intro-
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Fig. 12. Similar to Figure 10 but with a lower crust viscosity reduced
to 0.1n,. : - -

duced, which should help to understand regional stress patterns. First,
density heterogeneities which vary in two horizontal directions (rather
than just one) will be inserted in a stratified lithosphere, where each
layer is mechanically homogeneous. Second, allowance will be made for la-
teral variations of the mechanical properties by considering a case which,
in spite of its unsophisticated geometry, will be instructive.

8. Laterally Homogeneous Lithosphere

The mathematical details of the solutions of the Navier-Stokes and
continuity equations in a stratified and laterally homogeneous lithos-
phere are described in appendix 4. Here we shall briefly discuss appli-
cations corresponding to the standard viscosity structure of figure 1.
The mass heterogeneities, however, are localized in both the x and-y di-.
Fection. At the Moho Am = m exp(-x2/a2) exp(-y2/b2) and in the fourth
layer Ap = 3p exp(-x2/a?) exp(-y2/b2). Velocities and stresses were com-—
puted at all depths. In Figure 13 the deviatoric stress pattern and the
topography corresponding to four different amplitudes 3p of the cold root
have been plotted. The most striking feature is that ome cannot predict
the relationship between topography and stress regime unless one knows
the depth distribution of the density anomalies in the lithosphere. In
the center of the figure, the point of highest altitude is seen to be in
extension along the shortest axis, in compression along the longest axis
Or in compression along the shortest axis.

In spite of the additional complexity, these results confirm the gene-
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Fig. 13. Four cases showing the induced surface vertical stress (or
topography) indicated by the dashed lines as well as the principal hori-
zontal deviatoric stresses indicated by white (extension) or black (com-
pression) arrows. The number in the corner of each diagram is the mass

Moho. The spacing between leveling lines amounts to 120 bars if Am; cor-
responds to 1.5 kbar. In this case the scale for the horizontal stresses
is sych that the extensional Tyy value at the center of the structure,
in the upper left quadrant, amounts to 700 b.

ral conclusions obtained with two dimensional models (see figures 8, 9,
and 10). Here also, the topography decreases as the intensity of the cold:
root increases. The material spreads out under:the influence of the light
crustal root but the presence of a cold root reverses this trend : when
‘the moment M of the density anomalies becomes positive the surrounding -
lithosphere is attracted towards the mountain. This regional lithospherie.
thickening is not found to be accompanied by any amount of peripheral °
lithospheric thinning. This last behavior is a result of our simple as-
sumption of perfect lateral mechanical homogeneity of the structure. De~

partures from this simplifying assumption will be examined shortly.
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b. Comments on Observed Regional Stress Fields ™

Let us examine the orientation of maximum compression in the Alpine
-ypegion and in Eastern North America. In the Western Alps earthquake focal:
pechanisms suggest E-W compression, in contrast to the prevailing N-§ -
compression in Western Europe [Fréchet, 1978 5 Philip, 1980 ; Froidevaux
et al. 1980]. On the other hand the compression in the_Appalachians is
roughly at right angle to the compression in the surrounding regions
" fzoback and Zoback, 1980]. Although these two examples represent diffe-
rent geodynamical situations we think that the models presented in Figure
- - I3 can basically explain both observed stress patterns.
= " The existence of a cold lithospheric root under the Central Alps has
been-mentioned .already. Its extension under the Western Alps seems to be
1imited [Panza and Mueller, 1979 ; Poupinet, 1976]. As long as the moun-
tain chain strikes east-west the predicted north-south compression can
only enhance the prevailing European long range stress field, which should
be .attributed to the collision with Africa [Froidevaux etal., 1978]. As the
chain begins to strike southward the effect of the cold root is to super-
pose a dominant E-y compression. In the southern branch the field data is
less convincing. ] . - . -

~Let us turn to the Appalachians. Here the salient feature is that com-
pression perpendicular to the strike of the structure seems reduced. The ex-
planation of this stress pattern makes use of the existence of a crustal
root [McNutt, 1980] and, in the consideration of the age of this orogeny,

o
Lo g

e e e

suggests that the induced extensional stress somewhat cancels out the - -
2-W plate compression well documented on the eastern border. Here, of

course, alternative explanations can be put.forward : in a relatively

cold lithosphere, stresses are less liable to relax, and uplift related

to erosion could thus cause superficial flexural extension in the appro-
priate direction [Zoback and Zoback, 1980].

c. Role of Laterally Varying Mechanical Properties s

cribes three concentric regions of different viscosities. A laterally

> vertical stress (or s . : . .
( homogeneous density anomaly is located in the central zone. For simpli-

1 as the principal hori-
:xtension) or black (com-
ich diagram is the mass
-thosphere and at the
i to 120 bars if Am; cor-
* the horizontal stresses
nter of the structure,

formations. Appendix 5 treats this problem and derives analytical solu-
tions for mass variations located at the base of the lithosphere (M=3mgh).
When no stresses -are applied at infinity the most salient feature is
that the same body forces acting in the central zone can generate either
- pure strike slip or thickening or thinning in zone 2. This tectonic style
depends in fact upon the relative viscosities in zones 2 and 3. Physical-
ly this is easy to understand. -‘Let us assume acentral negative mass de-
ficiency at depth and a corresponding high topography (plateau). This
Zone is in extension. For the limiting case of a-rigid outer region
(n3 >> n2) zone 2 is compressed by the spreading of the central plateau.
It thickens. The other limit is that of an inviscid outer reion (n3 << no)

dels (see figures 8, 9,
the infensity of the cold
he influence of the light
erses this trend : when
sitive the surrounding
his regional lithospheric

amount of peripheral
esult of our simple as-
ty of the structure. De-
e examined shortly.

in the appendix. They are plotted in Figure 15, -
This complex behavior is in contrast with that of an equivalent two
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“: chanical properties of the lithosphere. In three dimensions the simple
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‘

. central zone displaces but does not deform the neighbouring regions. In-
" deed in two-dimensional models the deformation is determined only by lo-
cal density variations and mechanical properties.

" tures can be made by raising the following question : what stresses must

- sustaining the cemtral topographic structure strongly depends upon the

Al
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Fig. 14. Three concentric regions with different viscosities n), np and.
n3 with a compensated load applied to the central region. The top dia-
gram is a vertical cross section and the three maps underneath illustrate
three possible tectonic styles in the intermediate region (small arrows).

dimensional model- (infinitely elongated plateau), where extension of the

Another useful comparison between?three -and two- dimensional struc-

be applied at large distance to keep an elevated plateau from spreading ?

In two-dimensional models this requires Txx = Tzz, which according to (3) 3

implies a far-field horizontal stress T,y totally independent of the me-
concentric model of Figure 14 shows that the far-field stress capable of

relative viscosities of zones 3 and 2 (see equation (E20).Clearly in the
extreme case of a rigid outer region the geometrical configuration shows
that no finite far-field stress is capable of inducing a deformation of
the intermediate zone 2. Only such deformation could transmit stress to
the central zone, so that a deformable outer zome is required. However,
the more viscous this outer zone, the larger the required far-field stress
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P?g. 15. Plots of the radial velocity and horizontal stresses in concen-—
Tic regions depicted in Figure 14. Here the two central zomes have the
same viscosities (n; = n,). Three different valuesof nj have been consi-
der?d for the external zome. The top, middle and lower curve for the
r?dlal velpcity;:,vr correspond to the top, middle and lower stress graphs
glven underneath. 1¢ (dotted line) and Ty (full line) are plotted versus r.

This last conclusion indicates that the elevation and depth of compen-
sation of stable large geological structures do not comstitute in general
8 reliable indicator or gauge of the stress intensity in the foreland. In
& more general sense, the computation of the stress field in a given area
makes one face the formidable requirement of knowing not only the depth
of comp?nsation of the topography (i.e. of the moment M of the mass het-
€rogeneities) but also the lateral variations of the mechanical properties
of the whole lithosphere. Possible interactions between different prov-
inces can give rise to a large variety of phenomena in continental tecto-
ﬂlcS-.An illustration can be found in Figure 13 where the inward flow of
the lxghosphere towards the mountain structure could very well be accom-

°°,o.....L* - | __
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" manner. . .

. coupling in the deformation-of adjacent provinces. For example, regional

i
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panied. by thinning if zomes of mechanical weakness exist in the forelang,
‘Such low strength regions are predicted when non-Newtonian effects are
taken into account. Another -source of weakening derives from induced wa
upwelling currents such as those pictured on Figure 10. Extensional sty

tures around the Alpine cha1n in Europe could have been formed in th1s

The concept of stresses due to lithospheric :density heterogeneltles
emphasized in this papér does not contradict tbe widespread belief in a_
“"far field transmitted stréss field" which is ‘the consequence of more or
. less distant sources. For éxample, although compressional tectonics in
Asia must be helped by the "cold root effect" which-must exist in any
collision process, some compgression is certainly also causéd by the-

: Indian.plate subducting under Indonesia. :

eror g

5. DISCUSSION AND CONCLUSIéN

ey

ThlS paper puts forward K phy51cal framework for the analysis of in-
traplate deformatlons caused by existing density heterogeneities within
the lithiosphere. For long wavelength density wariations, the lithespheric
thickening or thinning rate was shown to be proport1onal to ‘the local
moment of the density anomalies. For elongated structures, this golden
rule applies whatever the type and spatial variations of the mechanical
. properties. It explains observed tectonic stresses related to large scale
structural units. Deeply compensated ridges and elevated rifted regions
are thus in extension, but high moutains compensated not only by a light
crustal root but also by a-deeper lithospheric=cold root are in compress-
ion. For short wavelength density variations, :the lithospheric deformation
varies with depth. For instdnce, in a narrow moutain range extension can
occur in the crust although just below a convergent flow is. 1nduced in
the lower lithosphere by the dense cold root. ‘Density heterogeneltles of
"short lateral extent are regionally, but not locally compensated by topor
graphy. The larger the wavelength the stronger the local component of
_the compensation. - -

The calculation of intraplate deformations and stress patterns.must
take into account the existénce of lateral variations of the mechanical
properties. This reveals important geometrical constraints leading to a

- Iithospheric thickening can be accompanied-by peripheral extension. Three
dimensional tectonic models must specify not only the topography and its
compensation depth, but also the mechanical heterogene1t1es of the 11thosi
phere. In the present stage of knowledge this is not an easy task. Con-
versely, observed regional stress fields can provide a hint about deep
seated density variations and about mechanical heterogeneities. This
- approach was illustrated by relating rapid changes of the stress orien-
tations in the Alps or the-Appalachians to the predominance either of a
dense cold root or a light crustal root. More generally, tectonic stress -
patterns combined with other geophysical data (seismic structure,.gravi-
metry anomalies, heat flow} should become a useful element of the data- -
set from which to infer the deep llthospher1c structure. . :

a. Rheology - . - : -

The mathematical treatment of the lithospheric deformation is very
simple for the case of a Newtonian viscosity. -This simplicity justifies
the starting assumptions of our models. It gives optimum physical insight’
as _the use of the superposition principle allows one to investigate sepa-
rately the solutions for each wavelength and to obtain simple analytical -
formulations. This approach is adequate for the understanding of general
phenomena. Regional studies deserve the introduction of further improve-
ments and complications : non Newtonian behavior, presence of shear zones,
etc. -
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rranian. However the Alpine collision zone is certainly linked #& their
formation . o T . o

At the climax of the compressional phase the altitude remains moderate
because of the presence of the cold-root. If the latter stops growing, itg
slow warming-0p wiltl generate uplift during some tens-of Ma. A more drama-
tic event takes place if the eold root grows large enough to break off
and- sink. The overlying region will experience rapid uplift without com-
pression. The elevated structure will even be in extension now- that the
dense lithospheric root has disapeared. If Tibet has raised ima relative-
ly short time, it could be a good candidate for the above mechanism. Such
& scenario may have some similarity with the proposed delamination event
for the Colorado plateau [Bird and Baumgardener, 1981} Tx .

In conclusion, this paper should help to dismiss the picture of the
continental lithosphere reacting passively to external push oripull. The
proposed physical concept suggests a dynamic structure where lecal sources
and neighbouring activity generate a great wealth of internal. tectonic
phenomena. ..

APPENDIX ] : MATHEMATICAL RESOLUTION FOR A HARMONIC PERTURBAT;@N

Lef us consider a two-dimensional layered structure similat to the
model lithosphere pictured in Figure 1. Each layer has a uniform Newto-
nian viscosity. In some cases, however, an elastic top layer is added.
Mass heterogeneities are either located at the interface between'two layers
or distributed homogeneously with the depth z in a single layer. The am-
plitude of these mass fluctuations is a’harmonic function of the horizon-
tal direction : Ap_= &p cos(kx) for distributed density heterogeneities
and Am = ém cos(kx) for mass heterogeneities concentrated at an interface,

The induced velocity and stress fields are computed by solving the
Navier-Stokes and continuity equations. For a given layer these equations

read : . . -
2 2 ' .

n(8u+3u=_§£ _ (an)
%2 222  ox i ) - L
2 2

n(i_w + .a_w) = Q - Apg . - - (AZ)
ax2 a2 9z - - :

du 8y _ A3

5x T3z - 0 3

Where u and w are the horizontal velocity components, g is the gravity
acceleration, and p is the departure from the hydrostatic pressure. The

- standard procedure is that used for solving the post-glacial rebound
problem in a layered Earth [Takeuchi and Hasegawa, 1965 ; Lliboutry, 1973;
Cathles, 1975] or the more general viscous flow problem for the Earth's
mantle [Hager and O'Connell, 1981]1. The unknown functionals can be written
in a harmonic form : - : o

u = h(z) sin(kx) .- - : (A4)
w = j(z) cos(kx) (45)
P = p(2) cos(kx) 7 _ : L (A6)

Inserting these functions into (A1), (A2), and (A3) one finds the fol-
lowing relations :

a%h "
— -k =- 2 (A7)
d22 n

=4 sxh=0 T =
‘=
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2; . _[4 1
E_azl—sz =[§- Bpg];
dz

These can be coﬁbined to £
volving only j(z) :
T, 2. -
_d_l! _ 2k2 d J + k‘-&j - k2 apg \
- dz" - dz2 - s n

The general éolutign can be

R

kz

;j = (A + Bkz) e +_(C + Dkz)

= where A, B, C, énd D are const
i tions h(z) and p(z). can easily
- (A7) and (A9) :

h=-(A+ B+ Bkz) 5% 4 (¢ -

= 2nk(Bekz + De-k?)
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Tzz = 2n(3w/3z) - pand Txz = 1
~ted : .

g

'

Tax T 2nk{-(A + 2B % Bkz) X% 4

T2 ~ Znk ((A + Bkz) _ekz}- € +1
fee ™ (200 (A 4 B+ By K7
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tructure similar to the (A7) and (A9) :

ayer has a uniform Newto- -
stic top layer is added. : kz - ks
aterface between two layers | h=-(A+B+Bkz) e + (C D + Dkz) e

in a single layer. The am- ;

ic function of the horizon-
2d density heterogeneities

(A12) .
p= 2nk(Be¥? + De_kz)
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>ncentrated at an interface, - Furthermore the nonhydrostatic stresses Tyy = 2n(3ufdx) - P o
‘ngUted by solving the 3 Tzz = 2n(3w/32) - p and 14, = n(3u/3z + ow/dx) are also readily calcula- .
jiven layer these equations 5 ted : ) : '
) o ™ 2k[- A+ 28+ m) 4 (e - oy e coston  (ara)
(an .

x = 2nk ((A + Bkz) &% = (C + pi) e'kz) cos (kx) - (A15)

- (-an (A + B+ Bkz) &% + (C - D + pia) e7kzy _ "’—ﬁﬁ)sin (kx)(A16)"

Positive stress values correspond to extension. Formally, the problem
thus solved. The exact values of the integration constants A, B, C and
D in each layer depend on the boundary conditions and the conti
lations at interfaces between layers. In all our models the low
extends to infinity. In this layer one has A =

nuity re-

est layer

B = 0 so that velocities _

th. Two more relations are derived B
ssuming a vanishing vertical velo- -
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3 vhen a mass heterogeneity 3m is found at the interface. This requires a -
3 Jump dmg in the value of T,z. Altogether one
(a4) 3 the 4n integration constants corresponding to a nlayer model.
E:g; ; The results can be presented in a nondimensional form by introducing

8 references a length'lo, a viscosity no, and a density 9p,- Nondimen-
8lonal quantities are denoted by primes as follows :
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: o=k,

LR n/n,
o' .
Bplapo

(A7)
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T r/aoo g ’fo

From this one may infer that the dimensional velocities are propor-
tional to the square of the characteristic dimension of the system £.
On the other hand, the stress magnitude is independent of the value of
the reference viscosity n,» although it does depend upon the viscosity
ratios between layers. :

APPENDIX 2 : ANALYTICAL SOLUTIONS FOR 00!4E ELEMENTARY STRUCTURES

Case I : Simple Half-Space Model o '

Let us consider a sinusoidal mass heterogeneity om at a depth d in a
viscous medium (Figure Al). The top part of thickness ' d will be called

layer 1 and the half-space underneath it, layer 2. The viscosity contrast

nyfny equals yp. The integration constants in (All1) shall be written with
index 1, resp. 2.

Following (All) and (A16) one can express that both the vertical velo-

city and the shear stress vanish at z = 0, This yields :

AL +C; =0 ] ) (81)

Ay + By +>C1 -D; =0 . (BZ)“

The conditions at infinity imply :

A2=B2=_0 . i - ’ - (B3) .

and finally at the interface (z = d) continuity in velocities expressed
by (All) and (A12) and in stresses expressed by (Al5) and (Al16) leads to
the additional relationships :

(A; + B, kd) X9 + (C; + D kd) e X4 d ’

kd -kd -kd
-(Al + By + Blkd) e + (Cl - D; + led) e = (Cz - Dy + Dzkd)e (B5)
(A + By + Bj;kd) ekd + (C; - Dy + Djkd) e_kd = u(Cz - D, ¢ Dzkd)e_kd (B6)

(A + Bikd) &9 - (c; + Dkd) X = —y(c, + Dykd) e K4 4 28 (27)

2nk
- 2=0

S
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Fig. Al. Simple two layered structure with top layer of viscosity n)
and an infinite lower layer of viscosity ny. A harmonic distribution of
mass is located at the interface.

= (C, + D, kd) e € (B4) 4§
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For u = 1 one has an infj
jutions: read as follow : :
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e~ 8_;1%% sin(kx) :

L = mg (1 + kd) e-kd cos (kx

d

L dmg (1 - kd) e—k cos(k)-z
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Case II : Simple Plate Model

This case differs from the
pect : layer 2 has a vanishing
bold and must be combined with
sember equal to zero as ny van

4, = 208 Kd cosh(kd) + sinh(k
4nk kd + sinh(kd) cosh(k

3 - 2mg sinh(kd)
. 4nk s;i.n_h(kd) cosh(kd) + .

¢ - 8mg kd cosh(kd) + sinh(l_c;
4nk kd + sinh(kd) cosh ¢

B .- _mg sinh(kd)
4k sinh(kd) cosh(kd)

®d the surface values of stres
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The above system of equationg defines the valyes of all constants of

integration. Here we shall treat two specific values of the viscosity T
,r‘tio:u=landu=0. N

For u = 1 one has an infinite half-space of constant viscosity. The
solutions read as follow : - : : -

(A17)

. dmg Ceay ~kd . ) ' o S
A - Zﬁ% (0 +kd) e ) -

__dmg -kd ‘ - ‘ N

L] Znk ©- _ -

velocities are propor- ) -
' peop - %%% (1 + kd) 7K

T TN AT ]

:sion of the system g,. I 3
endent of the value of d
end upon the viscosit c - omg -~
p y Dl 4nk e
_omg  kd _ -kd kd _ . ~kd, - : i
NTARY STRUCTURES 2 = 7ok (© & )+ kd(e ) (88)
.. omg  kd  -kd : : -
2= gk (& T ) —_— :

ty am at a depth d in a
<ness d will be called
!. The viscosity contrast
) shall be written with

All physical quantities are now defined. We shall discuss and plot the
values of the horizontal velocity and normal stresses at the surface
(z = 0). Substituting (B8) in (A12), (A14), and (Al5) one finds :

= - Amgd sin(kx)

: both the vertical velo- u 2n o &9 -
rields : 1, = 3mg (1 + kd) e7kd cos (kx) . (BI10)
: -kd '
(B1) T " dmg(l - kd) e cos (kx) - : (B11)

(B2)

Figure A2 in the left portion depicts the amplitude of Tzz and Tyy.
The first quantity~iSproportional to the induced topography. At large . ' -
wavelengths it has its maximum value which implies” that the weight of the
topography~is exactly compensated by the mass defect 3m at depth. The
falling off of the curve at shorter wavelength (large k) shows that
local compensation does not hold in that case. The 6thernéaningfu1quan— :
tity is the difference (Txx - Tpz) = 4n(bu/dx). It characterizes the de-
formation 3u/3x at the surface. Its vanishing at large wavelength may be
surprising. We shall see that this case is somewhat pathological for not
having a reduced viscosity in the lower layer.

(B3)

n velocities expressed
Al5) and (A16) leads to

d) e k& (B4)
-kd

Cz - D2 + Dzkd)e (BS)

2y - Dy + Dykd)e K4 (B6)

-kd ) :
) e + 5%% (B7) 4  case IT : Simple Plate Model

1 This case differs from the previous one (Figure Al) only in one as-
pect : layer 2 has a vanishing viscosity. Equations (B1) and (B2) still
hold and must be combined with equations (B6) and (B7) which have a right
wember equal to zero as n2 vanishes. Thus one finds : : B

A, =28 kd cosh(kd) + sinh(kd) T :
4nk  kd + sinh(kd) cosh(kd) -

EB - Omg 'sinh(kd)
YU Gk SsTonka) cosh(kd) + dk

¢, « 2mg kd cosh(kd) + sinh(kd)
' "%k kd ¥ sinh(kd) cosh (kd)

D == _mg - sinh(kd) :

(B12)

yer of viscosity n, K 4 k  sinh(kd) cosh(kd) + kd
nonic distribution of

8nd the surface values of stress and horizontal velocity are expressed by :
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Fig. A3. Similar to Figure A

- omg osh(kd) + kd sinh
coshz(kdz + (kd)?

Tzz

\\ T Tex Figure A4 depicts this quar
\ of the topography multiplied b
--31 \\ - T : 1 - ity of -the elastic 1id. As the
— . kd \ T = Tgz at the top of the fluid la
: e’ kd peath the 1id is now finite :
L 1 1 1 1 1 1 1 ~kd
: A 1, = omgkd e sin(kx)
= Figz A2. Plot of the surface stresses versus wavenumber computed for - Xz b
the simple structure depicted in Figure Al. On the left the lower layer cosh (kd)
has zero viscosity. On the right its viscosity is the same as for the 1, = dmgkd

top 'layer. A stress value equal to unity corresponds to the weight of COShz(kd) + (kd)?
the "deep seated mass anomaly. .

<

} _ omgd cosh(kd) . - » o
- - U773, kv sinh(cd) cosh(hd) Sin(0) (B13) -

kd cosh(kd) + sinh(kd)

_ 22 kd + sinh(kd) cosh(kd) ©°¢(x) : ®14)
" _ . sinh(kd) - kd cosh(kd) L
“xx = ™8 % + sinh(kd) cosh(kd) °°°(K¥) : (B13)

These quantities are plotted on the lefthand side of the Figure A2.
The main difference from the half-space solution is that Txx vanishes at
large wavelength. This means that, at large wavelength, the deformation
is no more inhibited by viscous flow in layer 2.

Case IIT : Viscous Half-space or Plate Overlain by an Elastic Lid

The upper part of the Earth's lithosphere being able to sustain stres-
‘ses,” an elastic lid has been added to the simple models presented above ¥
(Figure A3). This only changes the boundary condition at the top of layer

1 as free slip is replaced by no slip. Instead of equation (B2) one has ™

now for a vanishing surface horizontal velocity : s g

A_1 +B; -C +D; =0 - o - (B16) -1 lid .

_ .Comb?ning th?s with (BI) and (B3) to (B7) one finds again the appro- T——Lf | 1 1 1 .
priate integration constants for both the half-space model (n; = ny) and Fig. A4. Plot of the vertical s

the plate model (n, = 0). This yields for z = O wnd of the horizontal averaged s
Mmber for the structure depicte
| the same as in Figure A2. For 14,

the weight of the deep seated ma

T, = mg(l + kd) e cos (kx) (half-space) (817)
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ngth, the deformation
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able to sustain stres-
>dels presented above
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squation (B2) one has
(B16)

inds again the appro-
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(B817)

¢

T, = dmgkd
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Fig. A3. Similar to Figure Al but with an elastic 1id of thickness h.

cosh(kd) + kd sinh(kd)

’%\aﬁwﬁr
Yo

1, = omg

2z cosh?(kd) + (kd)?2

= Flgure A4 d9picts this quantity which is e
of the topography multiplied by pg(l + Dk“
ity of the elastic 1id: As the surface vel

1y at the top of the fluid layer.

peath the 1id is now finite :

-kd .
L aggkd e sin(kx)

cosh(kd)

cosh?(kd) + (kd)2

(half-space)

sin(kx)

:;\ J \Q' ._
\\ 3 \‘Q%&@S ]
"X\\"\\\ \‘ \'v‘. ;

cos(kx) (plate)

qulvalent to the amplitudé

) where D is the flexural rigid-
ocity is-zero Tyx is equal to
However the shear stress Txz under-

1 .
1 kd, 1

kd

-1

Fig! A4. Plot of the vertical stress acting underneath the elastic 1id
8ud of the horizontal averaged stress generated in the 1id versus wave-
bumber for the structure depicted in Figure A3. The dimension for Tzz is
the same as in Figure A2. For 144, however, the unit value corresponds to
the weight of the deep seated mass anomaly multiplied by the ratio d/h.
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This contributes to the horizontal compression or extension in the
elastic 1id with a vertically average value given by :

T =-1__/kh - :
XX Xz -

th is the thickness.pfAthe elastic 1id)

Thus : i ) -
T = 3med e'kd cos (kx) B (lid_ovef half-space)
XX 7h -

= dmgd . cosh(kd) cos(kx) (lid over space)

o g g

cosh?(kd) + (kd)?

At large wavelengths the -amplitudes of the mean horizontal stress
due to the shear stress Ty, underneath the 1id is equal to - 9mgd/h,
showing that the deeper the mass fluctuation the larger the stresses in
the 1id. This only holds for kd < 1. - . T
. For a deflected lid the quantities given in formula (B21) and (B22)
still represent the ‘mean non hydrostatic stress in the 1id. The dynamie
role of the basal shear stress t,, on the plate movements has been inve
tigated by similar-dethods [Hager and O'Connell, 1981]. Moreover, this
basal shear stress has been invoked for explaining local variations in 3
‘the crustal stress pattern [McGarr, 1982]. H

APPENDIX 3 : CHANGIRG THE VISCOSITY CONTRAST IN THE FIVE LAYER MODEL

The standard five-layer model of Figure 1 has the following viscosit
‘yalues starting witg that of the top layer : 10n,, 10n,, 10ng, ng, n,/l
_Two more sets of values have been used. The first assumes a softer lowe

lithosphere with 10h,, 10np, 1010, no/10, no/1000. The second, on the
contrary, increases the asthenospheric viscosity with 10ng,, 10n,, 10ng
ng. Figure A5 gives the solutions for. the standard model élready

No>s
ﬁgund in Figure 2 as well as the new solutions. —

! TFor k » | the variations are hardly noticeable. When k approaches ze
the surface value of tyy differs markedly in the two new cases.

- TFor softer lower layers than in the standard model Ty has become

larger. Equation 7 accounts for this effect : the softer lower 1litho-
sphere implies a larger value of n/fi at the surface. In the case of a

reduced viscosity contrast for the asthenosphere Tyy is' seen to shoot

up towards T,,. Such a behavior was already noticed in appendix 2 for

the case of a homogeneous viscous half-space: In fact this behavior of
Txx is numerically present in all models but for values of k so close to
zero that it cannot show on the graphs. Therefore it usually corresponds;
to such large wavelengths that it remains outside of the field of geo-
physical applications.

APPENDIX 4 : THE THREE DIME&SIONAL MATHEMATICAL TREATMENT

Let us again assume a structure with mechanical properties varying
only vertically, and consisting of horizontal -layers having a amniform
Newtonian viscosity and let us generalize to three dimensions the formu- . .
lation found in appendix 1. Using a similar notation one introduces a ' Yig. A5. Similar to Figure 2
density distribution Ap = 3p cos(ax) cos(By), where x and y are the two 3§ the standard viscosity distri
horizontal axes. The horizontal velocities u and v, the vertical velocity’ Mo additional solutions are
w and the non hydrostatic pressure can be written "1y ‘P?ing the viscosity distrib
! . ) _ . »ﬁ Smilar five layer structure,
u = h(z) sin(ox) cos(By) (D1) 3 of layer 4, (no). The other c
i(z) cos(ax) sin(Bv) (p2) §  ©ortrary for a lower viscosi
j(2z) cos(ax) cos(By) (D3) j

<

€ <
non
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Fleitout and Froidevaux:

Fig. A5. Similar to Figure 2. The full line repeats the solutioﬁs for
the standard viscosity distribution in the five layer model of Figure 1.
Tﬂo»édditional solutions are plotted here in order to test the effect of
Varying the viscosity distribution. The dashed curves correspond to a
Slmilar five layer structure, but layer 5 has a viscosity as high as that
of layer 4, (ng) . The other curves (long and short dashes) are on the
tontrary for a lower viscosity in layers 4 and 5 (ng/10 and ny,/100).
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P = p(z) cos(ox)yscos(By) Nk R Py VY E B

The continuity and N¥vier-Stokes equations yield :

oh+gi+ Lo T

{7

z * -
_ o ]
ap + n(-kzh + &b ‘2‘)= 0 (D)
- - dz? :

o
|
o~
(=
~J
~

2.
Bp + n(-kzi + 52-5) =
&
%424
-, n(-kzj ¥ 32 J)
»z dz?

= - g

mnen
[=4
(=]
Nt

Where k? = o2 + B2. Again thesg equations can be combined to form a-
fourth order differential equation involving only the unknown functiong

i(z) and identital to (A.10).

Y43 2: 17 2 =
43 o2 4535 K4j - 5_2.83= 0

dz" dz? . - ' .

The solutions ‘are now

(A + Bkz) oK% + (C + Dkz) & X% + 208 :
o h nk? )

i(2)

f

h(z) {%-[— (A+B+ Bkz) ek? +;(c - D + Dkz) e
g .

kzj
. kz i —kz:!
i(z) T[‘(A+B+Bk2)e + (C - D + Dkz) e I

2nk- (Bek? + De_kz) i .-

p(2)

The corresponding expressions for the stresses are

2 7 i I
Txx = 2n {“T [;-'(A + B + Bkz) er + (C - D + Dkz) e kz‘] -
i - k(Bekz + De—kz) cos (ax) cos (By) )
2 _ &
Ty, = 2n {Ek— [—(A + B+ Bkz) % + (C - D + Dkz) e kz] (D15) 1
- k(Bekz + De_kz)} cos (ax) cos (By) '
Tz = 2nk [(A *+-Bkz) ekz - (C + Dkz) e_kz] cos (ax) cos(By) '(]}16)_',:
aB | : kz . ~kz{ . .
Txy = 2n Y [(A + B + Bkz) e = - (? =D + Dkz) e ] sin(ax) sin(By)(D17)§
Tyz™ -Znu[(A + B + Bkz) ekz + (C = D + Dkz) q—kz + @%] ) ~ (p18)
sin(ax) cos(8y) e
: =—2n3[(A + B + Bkz) &% + (C =D + Dkz) e K? 4 20 (D19)’
ye - : nk2 ;

cos (ax) sin(By)

For B = 0 these solutions are identical to the two dimensional solutions
of appendix l. The relative amplitudes of the velocities u and v are in .
the ratio a/B. For the deformations 3u/dx and 3v/3y this rato is a2/g2.°
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In the radial direction the
porizontal stresses :

dt I -
-d—r-f- +_1’.‘—(T1: - T¢)v= 0

0o the other hand the constitu
plane yields two equations inv
pal stresses :

N T L
-3 r 3 ¢ 3 ‘'z n=
2 1 _ 1 .V
-§-r¢ 3 T, 3 'rz—Zn—]

. Bemember that-t, is equal to -

vere."Combining_ (E1), (E2) and
derives a second order differer

2
d Vr I av Vr

This has the general solution :
vV = Ar + _B_
r T

Where A and B are integration t
The stresses are obtained from

dVr Vr
Tr=Tz + 2n(2—+—)=—rz +
dr r
. Vr dVr
t¢=rr+2n(—-_‘) =T, + 6
r dr

N?tice that a solution of the ty
Blog or thickening of the 1ithos
oqxer hand, a solution of the ty
slip with Tr = Tz - 2nB/r? and 1
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the deformation of the structie is hps. the largest in the (direction of
:- ghe shortest’wavelength, i.e. of the shortest axis of the structure. -

APPENDIX 5 : SOLUTIONS FOR A LAYER WITH RADIAL VARIATIONS OF.THE
MECHANICAL PROPERTIES - - . -

In a thin layer overlying an inviscﬁﬁ fluid let us consider three
concentric regions of viscosities N1, Np, and n3. The inner region is ) ’ -
pounded by a circle of radius r;, whereas the outer regioq_extends from
a circle of radius rj to infinity. A mass anomaly Am sits at “the base of -
the inner region. Aceording to its sign one may think of the central re-
gion as being a plateau that tends to spread out (Am < 0) or an area
- ghrinking because of-its cold root (dm>> 0). Let r and ¢ be the radial
and angular coodinate in the horizontal plane and z the vertical direc-
tion. :

A H £ .
in be combined to form a In the radial diréction the equilibrium yields a relationship between J
: ) J
|
|

aly the unknown functioga

porizontal stresses::

-z
H o

P e

@)

T - .
o

Ov the other hand the constitutive viscous relationship inrthg horizontal i
plane yields two equations involving thé radial velocity V_ and the nor- f

mal stresses : i E B
“y 1 l— dVr ) - ;
k2 T3 YT g (E2) o ‘ |
e 7] -7 : i
2 1 1 Ve : : :
y e—kz] 3 T¢ T Ty T3, < 2n T : (E3) f
Bemember that 1, is equal to ~Amg beneath the plateau and vanishes else- f‘
- were. Combining (E1),- (E2) and (E3) in order to eliminate 1, and T¢, one !
- derives a second order differential equation involving only Vot ;
are : : . !
2 - = !
~kz av 1 av_ v, : o |
z) e ] S QS N : - (EW - P
) dr? r dr r2 - : |
y —kz] This has the general solution :
z) e
B .
y) V_r Ar + _I‘ (ES)
(ax) cos(By) (D16f' Where A and B are intégration constants. - _ )
3 The stresses are obtgined from expressiqg derived from (E2)_and (E3
r - dVr f r ) ;B _ i
e—kz] sin(ax) sin(By) (D17) =T o+ 2n(2 —_+ —) =1 + 2n(3A - T‘) -t (E6)
B - z - z -2
X = dr r r
kz . 9pg D18 V - av _ ) ) )
+ —;;] (DL % 1‘ =t +'2ﬂ(—£ - __E) =T, + 67A + 2n B (E7)
n 5 r dr r?
kz . dpg : (Df9§ ¥otice that a solution of the type Vp = Ar corresponds to uniform thin-
+ 2 & Blog or thickening of the lithosphere with T¢ = Ty everywhere. On the
n 3

; other hand, a solution of the type Vp = B/r corresponds to pure strike -
- @ slip with Tr = Tz - 2nB/r? and T = Tz + (2nB/r?).
two dimensional solutions; Considering now the three concentric regions one writes the solution
elocities u and v are in (ES) for each region using appropriate indices 1, 2, or 3. Various boun-
9v/dy this rato is a2/R2.} ¥y conditions wiill help to determine the values of the six integration
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_constants. To avoid diverging velocities and stresses in regiom 1, 31

‘tever the suroundlng v1sc051ty this reglon is: in extension for Am—< 0 a

- geneities in the neighbouring areas. This point is the major novelty
_deriving from this quasi three dimensional treatment. -
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A . n2 N2
E 215’(-”-; - l) / (3 + H)

/

must be zero. At the interface of two layers the radial ve10c1ty Vr and
stress T, must be continuous. It implies :

- B2 - - - : & (A- - A3) r? + By
Af;rl = Ayry) +— : . b ] 2 ) 2
ry _ T DT » r2
By -By - : F “gen v = (n3 + 3np) = = [3¢
Azry + — = ATy + — o = M r2
ry ‘T ) é: - ) :’: B 2. .
T, B, - - .. one specific applicationc
3nAp + —=n (3A2 Y : z T _ ’,, capable-of sustaining the
2 rl H . gorrespondmg topography in .
By ) B, . - H one requires tz; = T4 = Tr fo
n3{343 - —| = np (34, - — T o _gor the case where the inten
r2 r2 : _'lgcoslty (n; = mp). It read
2 ; i g 3 {3 r?
- The conditions at large distances determine:pne last relationship. R " T6 Amg (3 "'.n_l‘_ + iy
“a vanishing stress, A3 has to be zero. Let us:calculate the solutions T 5
for this particular _cage They are ' e < 'fhis;far-field stress is
T r - . P . . .
- _2Z _ _ 2z the viscosities. This is jus
! 2 (n3 = n2) 2 (3 nz + n3) the presence of lateral chan,
s : rl deformation in one area depe
A, = Tz - ’ Acknowledgments. During tl
2 2_ (n3 = n2) - i - with geslogists and geophyis:
uT ) were of great benefit to us.
By = - _z 2 (3n, + n3) : Yuen ha\ge helped improving tl
2 - .
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In the intermediate region A has the sign of Am(n3 -n,). This region
will experience pure strike slip if its viscosity is equal to that of
the outer zone (n, = n3), extension if Am(ny - ny) > 0 and compression
if Am(n3 - ny) < 0. This means that its tectonic regime is critieally
determined both by the rheogogical properties and by the density heter

In contrast with the above conclusion let us remark that for a uni-
form viscosity (n; = n, =ng3) the local thlnnlng or thickening rate only:
depends upon the. local value of Am. Indeed (A7) shows that (A2) vanishes:
so that no thickening occurs outside the central region. In this last
reglon, equation (EI2) shows that the thickening rate [-(3Vr/3,) - V./r
is equal to -(3mg/4n). Two dimensional médels lead exactly to the same
result. i B

The case of a non-vanishing stress at infinity remains to be considerek
More precisely one wants to solve the system (E8) to (El11) for the casef

= 0 but Az = (1 /6n3) (see E6 and E7).
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Am. This implies that wha-
n extension for Am < 0 and

Am(n3 -n,). This region
ty is equal to that of
nz) > 0 and compression
c regime is critically
nd by the density hetero-

is the major novelty
tment .. )

remark that for a uni- r
g or thickening rate only

shows that (A2) vanishes
1 region. In this last
3 rate [-(3Vr/dy) - V./r]
2ad exactly to the same

7 remains to be considered.
3) to (Ell) for the -case

(E16) -

(E17)

p

;p1eitout and Froidevaux: Tectonics ahd Topograph3 - s
. ng nz
By = 27, (;H“ 1) / (3_¥ ﬁ;) rf /v . ®18)
pm e =) 5, : 19 :
. ) T - - _
with v = (ng + 3np) - ;é [3(n = n2) (ng = m2) /" I3ng + np)]. g
2 =7 -

One specific application consists in computing-the far field stress -
1, capable of sustaining the central region with its demsity anomaly and -~ -
corresponding topography in a state of vanishing deformation. For this ’
one requires 1, = 74 = 1, for r < r,. For simpli¢ity we give the answer
for the case where the intermediate and central reégions have the same
viscosity (n; = ny). It reads : :

. -3 n3 r%i n3 ;i i
1 T3 Amg [(3 + HT + ;EE (l - ;T) c: gEZO)

This far-field stress is thus dependent upon the relative value of ) ;
the viscosities. This is just another illustration of the fact that in
the presence of lateral changes in mechanical properties stresses and .
deformation in one area depend upon the strength.of neighbouring regions.

Acknovledgments. During the initial stage of this work, discussions
with geologists and geophyisicists, in particular with Paul Tapponni€r,
were of great benefit to us. Constructive remarks by Peter Bird and David
Yuen have helped improving the final version of this paper. :

ameo e

REFERENCES

Artyushkov, E. V., The stresses in the lithosphere caused by crustal
thickness inhomogeneities, J. Geophys. Res., 78, 7675-7708, 1973.
Artyushkov, E. V., Can the Earth's crust be in a state of isostasy ?
J. Geophys. Res., 79, -741-752, 1974, - E
Baer, M.,Relative travel time residuals for tele seismic events at the new
Suiss seismic station network, Annales de Géophysique, 36,119-126,1980.
Bird, P., and J. Baumgardner, Steady propagation of delamination events,
J. Geophys. Res., 86, 4891-4903, 1981. -
Cathles, L. M., III, The viscosity of the Earth's Mantle, Princeton
University Press, Princetom, N.J. 1975.
Dalmayrac, B. and P. Molnar, Parallel thrust and normal faulting in Peru

and constraints on the state of stress, Earth Planet. Sci. Lett., 55,
473-481, 1981.

Frank, F. C., Plate tectonics, the analogy with glacier flow and isostasy, .-

in Flow and Fracture of Rocks, the Griggs Volume, edited by H.C. Heard
I.Y. Borg, N.L. Carter and C.B. Raleigh, pp 285-292, Am. Geophys. Unrion, -
Geophys. Monogr., 1972. B £ - )
Frechet, J., Sismicité du Sud-Est de la France, et une nouvelle méthode
de zonage sismique, Thiése 3&me cycle, Univ. sc.:Medic. Grenoble, 1978.
Froidevaux, C., C. Paquin and M. Souriau, Teetonic stresses in France :
in situ measurements with a flat jack, J. Geophys. Res., 85, 6342-6346,
1980.
Hager, B. H. and R. J. 0'Connell, A simple global model of plate dynamics
and Mantle convection,  J. Geophys. Res., 86, 4843-4867, 1981, h
Houseman, G. A.,D. P. Mc Kenzie and P. Molnar, Convective instability -of
a thickened boundary layer and its relevance for the thermal evolution
of continental convergent belts, J. Geophys. Res., 86, 6115-6132, 1981.
Hovland, J., D. Gubbins and E. S. Husebye Upper Mantle heterogeneities
beneath Central Europe, Geophys. J.R. Astron. Soc., 66, 261-264, 1981,

Isacks, B. and P. Molnar, Distribution of stresses in the descending




Fleitout and E;gidevaﬁx: Tectonics and Topography

ot o 4 "'.’-"@é’;.)

lithosphere from a global survey of focal mechanism solutions of Mantle

earthquakes, Rev. Geophys. Space Phys., 9, 103-174, 1971.

Le Pichon, X. and J. Angelier, The Hellenic arc and trench system

" to the neotectonic evolution of the eastern mediterranean area,

. Tectonophysics, 60, 1-42, 1979, °

Lliboutry, L. A.,
in Traité de Geophys1que interne, edited by J. Couldémb and G. Jobert,

_ pp 473-505; Masson et Cie, 1973.

Mc Garr, A., Analysis of state of stress between prov1nces of constant
stress, submitted to J. Geophys. Res., 1982.

Mc Kenzie, D. P., Active tectonics of the Alpine Himalayan belt : The
aegean sea and surrounding regions, Geophys. J. R. Astron Soc., 55,
217-254, 1978.

Mc Nutt, M., Implications of regional gravity for state of stress in the
Earth's crust and upper Mantle, J. Geophys. Res., 85, 6377-6396, 1980.

Mercier, J. L., Extensional-compressional tectonics. assoc1ated w1th the
Aegean arc. Comparlson with the Andean Cordillera of South Peru North
Bolivia, Philos. Trans. R. Soc. London, A 300, 337-355, 1981.

Molnar, P. and P. Tapponnier, A possible dependence of tectonic strength
on the age of the crust in Asia, Earth Planet. Sci. Lett., 52, 107-114,
1981. -

Nataf, H. C., C. Froidevaux, J. L. Levrat, and M. Rabinowicz, Laboratory
convection experiments ; effect of lateral cooling and generation of
instabilities in the horizontal boundary layers, J. Geophys. Res., 86,
6143-6154, 1981.

Panza, G. F. and S. Mueller, The plate boundary between Eura31a and Africa
in the Alpine area, Mem. Sc. Geol., 33, 43-50, 1979.

Paquin, C.,C. Froidevaux, J. Bloyet, Y. Ricard, and C. Angelidis, Tectonic
stresses on the mainland of Greece ; in situ measurements by overcoring,

- submitted to Tectonophy51cs, 1982.-

Pavoni, N., Erdbeben in Gebiet der Schweiz Ecologae Geol. Helv, ZQ} 751~
370, 1977. .

Philip, H., Tectonique récente et sismicité de la France : caractéristi-
ques géodynamiques - Géologie de la France, 26eme C.G.1I. Mémoire

“B.R.G.M., 107, 42-46, 1980. B

Poupinet, G , Sur 1'existence d'un manteau 3 trés faible vitesse sous les
Alpes occ1dentales ét ses implications tectonlques, Bu11 Soc. Geol.
Fr., 27,.1073-1083, 1976. = -

Rlchardson, R. M., S. C. Solomon, and N. H. Sleep, Tectonlc stress in the
plates, Rev. Geophys Space Phys., 17, 981-1019, 1979.

Sprecher, Ch., 1976. Die Struktur des_aberen Erdmantels in Zentraleuropa
aus Dispersinmessungen an Rayleigh-Wellen, Ph. D. Thesis, Eidg. Tech.
Hochsch. Zirich, 156 pp.

Takeuchi, H. and Y. Hasegawa Viscosity distribution within the Earth,
Geophys. J., 9, 503-508, 1965.

Tapponnier, P., and P, Molnar, Slip line field theory and large scale
continental tectonics, Nature, 264, 319-324, 1976.

Tapponnier, P., Evolution tectonlque du systéme alpin en Medlterranee,
poingonnement et &crasement r1g1de—p1ast1que, Bull. Soc. Geol Fr.,
437-460, 1977. B

Werner, D., and E. Kissling, Geothermlcs and gravity w:thln the Sw1ss
Alps, Terra cognita, 0, 77, 1981.

Yuen, D. A., W. R. Peltier, and G. Schubert, On the existence of a second
scale of convection in the upper Mantle. Geophys J. -R. Astron. Soc,
65, 171-190, 1981. i

Zoback, M. L., and M. Zoback, State of stress in the conterminous United
States, J. Geophys. Res., 85, 6113-6156, 1980.

: A key

19,

1981
1981)

(Received November 2,
accepted November 16,

Isostas1e, propriétés rhéologiques du manteau supérieur,

By

'

g

e

o

[CYI

o

STRAIN STRESS ANB UPLIFT

Mltsuhlro Tor1um1

Department of Earth Scienc

U]

-* Bunko-che 2-5, Mq;suyama

Abstract., Strain distr

; Sambagawa regiondl metamor)
- change of initially spheri
> 2000% with increasing metan
- increase apparently occurs
- the terrane. Deformation :
using the grain-sized quart
-to dynamically recrystalli:
- across the terrane was cor

‘. -the lower-grade zbnes was :

was about 50 MPa.‘: Combinir
and temperatures of the sti
" energy of the deformation ¢
- have been about 80-90 kJ/mc
- deep-seated Sambagawa metan
- at the lower crustal to upy
lithosphere, was sufficient
_ terrane to the earth's surf

" INTRODUCTION ) -

High pressure metamorphi
_around subduction and colli
Bird, 1970]. The process o
is partly revealed in recen
glaucophanitic Sabagawan an
al,, 1970; Ernst, 1975; Cow
al., 1978; Otsuki, 1980].
increased with pressure in

dropped at relative constan
Petrological evidence sugge.

~-elevation are very rapid co

.ature homogenization of the

Large-scale recambent fo
“been recognized in:-the high
:Ernst et al. [1970] and Kur:

" “trative deformation of rock:

Tt al., 1977].

lower-grade zones were not :
weak foliation and open fol
is composed of many thrust :
Therefore tt
to increase with increasing
-determined by shape change ¢
laria in cherty rocks of the
formed pebhles in the conglc

Copyright 1982 by the Americ
Paper number 1T1782. 0278-7




